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SUMMARY 

 Postnatal vascular growth is a complex process involving multiple cells types 

whose functionality is orchestrated by a variety of soluble extracellular growth factors, 

mechanical stimuli, and matrix derived cues.  The central goal for this dissertation project 

was to elucidate the role of osteopontin, a non-collagenous extracellular matrix protein, in 

postnatal vascular growth.    

 At the onset, we concluded that the current methods for measurement of 

vascularity in small animal models were lacking.  To address this shortcoming, we 

pursued micro-CT imaging for analysis of three-dimensional blood vessel architecture.  

We were able to demonstrate that micro-CT imaging provides an objective, quantitative, 

and three-dimensional methodology for evaluation of vascular networks that has broad 

applicability to preclinical studies. 

Next, we sought to apply the developed imaging techniques along with other 

complementary methodologies to explore the role of osteopontin in postnatal vascular 

growth.  Osteopontin was previously known to elicit survival, migration, and other 

relevant activities in multiple cell types involved in postnatal vascular growth.  Therefore, 

we sought to determine the in vivo significance of osteopontin in this process.  To do so, 

we compared wild type and Osteopontin-/- mice for (1) their ability to form collateral 

vessels and functionally recover following acute induction of hind limb ischemia and (2) 

their capacity for neovascularization, mineralization, remodeling, and the restoration of 

mechanical properties during fracture healing.  Data suggested that OPN is a critical 

regulator of collateral vessel formation and that this effect is driven by its role in 

mediating monocyte/macrophage migration and functionality.  Secondly, we found that 
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the presence of osteopontin was essential for normal early callus formation, 

neovascularization, late stage callus remodeling, and restoration of biomechanical 

strength.  Abnormal collagen organization was observed within the remodeling fractures 

of Osteopontin-/- mice, and we hypothesize that a unifying link between the vascular and 

bone defects may be related to deficient matrix organization and remodeling.   

In conclusion, the imaging techniques developed in this thesis provide a novel 

methodology for quantitative analysis of vascular structures in small animal models.  

Secondly, this project has yielded an improved understanding of the basic 

pathophysiological mechanisms that control postnatal blood vessel growth and bone 

fracture healing.     
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CHAPTER 1 

SPECIFIC AIMS 

Introduction 

 Better understanding the mechanisms of postnatal vascular growth has clinical 

relevance in a myriad of applications including treatment of cardiovascular disease, 

cancer therapy, enhancing wound healing, and growth of engineered tissues.  For 

example, therapeutic stimulation of blood vessel growth could alleviate pathological 

conditions such as tissue ischemia caused by peripheral or coronary artery disease.  

Peripheral limb arterial occlusion, common in diabetic patients, causes formation of 

chronic skin ulcers and often requires limb amputation.  Myocardial ischemia is the 

leading cause of morbidity and mortality in the world (1), and it has traditionally been 

treated by coronary artery bypass surgery, a highly invasive procedure that often leaves 

ischemic areas in the cardiac tissue that are not amenable to revascularization.  In 

addition, accelerating wound repair and the success of many applications in the growing 

field of tissue engineering depend on an adequate blood supply in order to maximize 

cellular viability and functional tissue regeneration.   

 Our long-term goal is to further elucidate the biological processes of angiogenesis 

and collateral development and gain knowledge that can help to develop improved 

clinical strategies that will optimize vascular function in ischemic, injured, and 

engineered tissues.  To this end, we have investigated improved methods for quantifying 

vascular growth and utilized these methods to explore the potential role of osteopontin 

(OPN) in ischemic limb collateral development and in angiogenesis and healing of bone 

fractures.  OPN, a non-collagenous extracellular matrix protein, has recently been 
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suggested to play a role in the regulation of angiogenesis (2,3).  Based on these studies, 

the central hypothesis for this study was that OPN plays a physiologically relevant role in 

control of non-pathological, postnatal vascular growth in vivo.  The overall objective of 

this project was to utilize microcomputed tomography (micro-CT) imaging and a 

combination of in vivo and in vitro studies to develop new methods for quantification of 

blood vessel network morphology and to gain new insights into the role of OPN in blood 

vessel formation.  Our collaborative team, which possesses expertise in cardiovascular 

biology, vascular imaging, bone healing, tissue engineering, and biomechanics, has 

approached this objective through the following specific aims. 

Aim I 

Validate micro-CT imaging as a method for quantifying vascular network 

morphology.   

Our working hypothesis was that micro-CT imaging in combination with perfused 

contrast agents can provide a highly objective and quantitative method for analysis of 

three-dimensional (3-D) blood vessel architecture in small animal models.  To 

accomplish this aim, we utilized the previously characterized mouse hind limb ischemia 

model to provide a well-controlled environment for analyzing collateral vessel formation.  

We also completed sensitivity analyses on the effects of image voxel size and 

binarization threshold on micro-CT analyses.  Standard histology assessments were used 

to validate this method. 
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Aim II 

Characterize the role of OPN in collateral development during hind limb ischemia. 

 Our working hypothesis was that OPN deficient mice would show a reduced 

capacity for collateral vessel formation compared to wild type controls.  We employed 

the hind limb ischemia model to evaluate the potential for neovessel formation in OPN-/- 

and wild type mice.  Quantitative, anatomical evaluations of collateral vessels were 

completed using the novel micro-CT techniques developed in Specific Aim I.  Laser 

Doppler perfusion imaging was used as a functional assessment of restoration of distal 

limb perfusion, and an exercise endurance test was utilized as a physiological 

examination of ischemic limb functional recovery.  Aortic ring and macrophage 

migration assays were employed to gain mechanistic insight into our findings.   

Aim III 

Define the effects of OPN on neovascularization, mineralization, and biomechanical 

properties of long bones during fracture healing. 

 Our working hypothesis was that OPN-/- mice would display reduced angiogenesis 

and altered healing in long bone fractures relative to wild type controls.  To test this 

hypothesis, a well-established femoral fracture healing model (4) was utilized to study 

the time course of fracture healing in wild type and OPN-/- mice.  Micro-CT, quantitative 

reverse transcription polymerase chain reaction (RT-PCR), and histology were used to 

evaluate vessel growth, matrix formation, and bone remodeling at the fracture site.  In 

addition, mechanical testing of fractured femurs was performed to test whether OPN 
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deficiency compromised the restoration of mechanical strength during the healing 

process.   

Innovation and Significance 

This work is innovative because it utilized 3-D micro-CT imaging for evaluating 

blood vessel growth within ischemic tissue and at sites of injury. In doing so, our group 

has developed a technique that is more quantitative and reproducible than the commonly 

used two-dimensional (2-D) histological analyses, laser Doppler perfusion imaging, or 

micro-angiography.  In addition, the available OPN knockout mouse colony provided a 

unique setting that allowed us to precisely determine the previously unknown role of 

OPN in the biological processes of collateral vessel formation and fracture healing.    

Successful angiogenic therapy requires temporal control, specificity to a targeted 

tissue, and avoidance of undesirable side effects associated with hypervascularity such as 

tumorigenesis and proliferative retinopathy.  Therefore, this work is significant because 

an improved understanding of the underlying biological mechanisms and the role of 

factors involved in vascular growth will aid in the development of safe and clinically 

effective treatment options.  This project has acquired a new understanding of postnatal 

vascular growth that could potentially be incorporated into development of new clinical 

treatments, and it has also provided a new platform methodology that can be applied for 

the screening of other pro- and anti-angiogenic factors in future studies.  In summary, this 

thesis project has yielded the following outcomes.  First, the imaging techniques 

developed are expected to become a standard for quantitative, volumetric analysis of 

neovascular responses in small animal models.  Secondly, application of these 

techniques, combined with the use of the available osteopontin deficient mouse colony, 
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has yielded an improved understanding of the basic pathophysiological mechanisms that 

control postnatal blood vessel growth and bone fracture healing.     
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

Postnatal Vascular Growth 

Vascular Anatomy and Accepted Modes of Postnatal Vascular Growth 

The basic constituents of normal blood vessels are endothelial cells, smooth 

muscle cells, fibroblasts and pericytes, basement membrane, and extracellular matrix (see 

Figure 2.1).  Postnatal blood vessel development is a complicated, incompletely 

understood process involving a complex cascade that includes a wide range of cell types, 

growth factors, extracellular matrix (ECM) proteins, cell surface receptors, and 

intracellular signaling pathways.  This process is relevant to pathological 

neovascularization in the setting of tumorigenesis, proliferative retinopathy, and 

rheumatoid arthritis, but it is also vital to formation of new vessels for restoration of 

normal blood perfusion to ischemic tissues.   

The three different mechanisms that have been hypothesized to contribute to 

formation of new vascular structures are arteriogenesis, angiogenesis, and vasculogenesis 

(see Figure 2.2).  Arteriogenesis occurs when preexisting arterioles dilate and remodel 

through endothelial and smooth muscle cell expansion to meet increased physiologic 

demands (5,6).  It is hypothesized that this process, which is mediated at least in part by 

monocytes and macrophages, is triggered by the increased shear stress that occurs in 

small, interarterial anastomoses following occlusion of a parent artery (7).  Angiogenesis 

involves sprouting or intussusception of new capillaries from pre-existing vessels and is 

triggered by tissue ischemia.  Intussusceptive angiogenesis involves column formation  
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Figure 2.1.  Arterial Anatomy.  (A) Schematic and (B) histological image of a normal 
arterial wall cross-section. I = Intima:  endothelial cells on basement membrane.  A = 
Adventitia: fibroblasts, collagens, elastin, etc.  M = Media:  smooth muscle cells, collagens, 
elastin, vitronectin, laminin 
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Figure 2.2.  Three modes of postnatal vascular growth that are thought to occur in vivo.  
(A) Arteriogenesis involves recruitment of pre-existing vessels to remodel and increase 
their blood flow capacity.  (B) Angiogenesis entails sprouting of new capillaries from 
existing vasculature.  (C) In vasculogenesis, or de novo vessel formation, bone marrow 
derived cells home to the sites of ischemia and participate in neovascularization. 
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within the lumen of a preexisting vessel, partitioning the remodeling vessel into two new 

capillaries.  Sprouting angiogenesis involves basement membrane degradation, 

endothelial cell migration toward angiogenic factors, endothelial cell proliferation, lumen 

formation, and vessel stabilization by basement membrane production and association 

with periendothelial cells (8).  Finally, there is evidence that vasculogenesis or de novo 

blood vessel formation by bone-marrow derived endothelial progenitor cells may play a 

role in postnatal vessel growth, although this remains controversial (9,10).  Arteriogenic 

recruitment of preexisting collaterals is widely believed to be the best means for 

reestablishing normoxia following arterial occlusion since it occurs relatively quickly and 

leads to formation of larger arteries that have higher blood flow capacity compared to 

nascent capillary structures (5). 

Control of Vascular Growth 

VEGF and FGF 

The majority of researchers studying treatments for ischemic disease have focused 

on the clinical potential of administering vascular endothelial growth factor (VEGF) and 

fibroblast growth factor (FGF) to enhance blood flow via new vessel formation.  This 

idea, termed therapeutic angiogenesis, has been applied for both myocardial ischemia and 

peripheral arterial disease.  Numerous efforts have been directed at testing the efficacy 

and safety of delivering these growth factors as recombinant proteins or via gene therapy 

for stimulation of angiogenesis and arteriogenesis in ischemic tissues.   

VEGF was first discovered over 20 years ago, when it was originally termed 

vascular permeability factor due to its inherent ability to promote vascular leakage (11-

13).  It is up regulated in response to ischemia (14) and serves as a well-known mediator 
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of both physiological and pathological angiogenesis through promotion of proliferation, 

survival, and migration in endothelial cells.    There is a 5-member family of VEGF 

proteins that includes VEGF-A, VEGF-B, VEGF-C, VEGF-D, and placental growth 

factor.  These factors act through three tyrosine kinase receptors (VEGFR-1, -2, -3) to 

activate downstream signaling pathways.  VEGF-A (commonly referred to as VEGF) has 

been the most researched as a potential therapeutic agent.  The importance of VEGF-A in 

vascular development is clearly illustrated by the fact that knocking out VEGF-A or 

either of its receptors (VEGFR-1 and VEGFR-2) results in embryonic lethality (15-17).  

Other growth factors, such as FGF, complement the angiogenic activity of VEGF, and 

there is likely considerable cross-talk between these factors (18).   

The FGF family consists of as many as 25 members which are named in 

consecutive order (FGF-1, -2, etc) (19).  The different FGF family members contain a 

highly preserved core amino acid sequence that leads to structural homogeneity between 

family members (20,21).  There is thought to be significant redundancy in the 

functionality of the FGF family members, as evidenced by the relatively mild phenotype 

that results in FGF-1, FGF-2, and even FGF-1 / FGF-2 double knockouts (22-24).  FGFs 

act on numerous cell types and are involved in a variety of biological effects including 

but not limited to development, cell proliferation and migration, wound healing, and 

tumorigenesis.  The effects are believed to be transmitted through FGF activation of 

signal transduction pathways via its family of 4 tyrosine kinase receptors (FGFR1-4) as 

reviewed by Powers and colleagues (25).  FGF-1 (acidic FGF) and FGF-2 (basic FGF) 

are the two best characterized family members and have been studied extensively for 
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their roles in angiogenesis.  Up to this point, clinical trials have focused on therapeutic 

potential of FGF-2 for stimulation of angiogenesis.       

Preclinical data from animal studies using both VEGF and FGF have shown 

tremendous promise in a variety of animal models (26-30).  However, many of the initial 

human clinical trials did not corroborate these results and have shown almost no 

improvement in clinical outcome.  The VIVA, RAVE, FIRST, and TRAFFIC trials are 

examples of the most prominent double-blind, placebo controlled trials to date.  The 

VIVA (Vascular endothelial growth factor in Ischemia for Vascular Angiogenesis) trial 

was a double-blind, placebo-controlled study that found that delivery of recombinant 

VEGF produced mild improvement in angina but did not significantly affect other 

endpoints analyzed (31).  The RAVE (Regional Angiogenesis with Vascular Endothelial 

growth factor) trial, which tested adenoviral VEGF gene transfer for the treatment of 

peripheral artery disease, found no increase in exercise performance or quality of life as a 

result of treatment (32).   FIRST (FGF Initiating RevaScularization Trial) involved 

delivery of recombinant FGF-2 for treatment of coronary artery disease, which produced 

a trend towards decreased angina at 90 days but no improvement in exercise tolerance or 

myocardial perfusion (33).  Lastly, the TRAFFIC (Therapeutic Angiogenesis with 

Recombinant Fibroblast Growth Factor-2 for Intermittent Claudication) trial found 

peripheral arterial disease to be modestly alleviated through delivery of recombinant 

FGF, which was found to increase peak walking time (34).  

Unfortunately, as mentioned, there have been a limited number of double blind, 

placebo controlled clinical trials to test therapeutic agents, and these studies have found 

only mildly promising results.  However, these trials have shown enough clinical 
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potential to warrant further investigation, and one could postulate that therapeutic 

angiogenesis may be a viable clinical option with the optimal growth factor, appropriate 

dosage, most effective delivery method (recombinant protein versus viral vector or naked 

DNA gene therapy), and location of delivery (intracoronary, intravenous, intramuscular, 

etc).  In addition, temporal considerations must be made, particularly in the case of acute 

myocardial infarction (AMI), in order to determine the ideal delivery protocol (time post-

AMI and single versus multiple treatments).  More research is clearly needed in multiple 

areas in order to find the optimal clinical protocol for delivery of pro-angiogenic 

treatments.  Also, it is imperative that scientists are able to define the roles of all factors 

involved in this process, and clinicians must carefully consider the roles of ECM 

mediators in addition to the potential synergistic effects from using combined growth 

factor therapies.  Hence, it is possible that, ultimately, the optimal treatment will contain 

a “cocktail” of therapeutic agents, which could potentially include not only growth 

factors, but also other “extracellular modulators” and progenitor or stem cells that may 

aid in vascular regeneration.   

The Role of ECM 

 The cellular components of the postnatal vascularization process are coordinated 

by direct cell-cell communication, paracrine and autocrine growth factor stimulation, and 

lastly, cues provided by the extracellular environment.  Type I collagen, laminin, 

fibronectin, vitronectin, and osteopontin are among the many ECM proteins thought to 

play a role in blood vessel formation and remodeling.  ECM components provide the 

structural scaffolding that maintains the organization of vascular cells into blood vessels 

and also initiate signals that stimulate specific cellular responses.  ECM generated signals 
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are primarily mediated through the integrin receptors and elicit events such as cellular 

survival, proliferation, and migration.  The integrins are heterodimeric transmembrane 

receptors that consist of the combination of one α and one β subunit.  There are 18 α and 

8 β subunits known to exist, and through different combinations of these subunits, about 

24 unique integrins are generated.  As reviewed by Serini et al., currently, nine of these 

integrins have been characterized for their implications in blood vessel formation (35).  In 

general, docking of these integrins to the ECM activates signaling pathways through 

integrin-associated kinases and other signaling molecules located on the intracellular side 

of the cell membrane.  These signaling pathways then propagate to the nucleus to alter 

gene expression and trigger a subsequent cellular response. 

 ECM proteins are able to induce specific cellular responses based upon the 

integrin(s) that they bind.  For example, collagen and fibronectin are thought to act 

through α1β1, α2β1, α5β1, and αvβ3 to activate endothelial cells and promote proliferation 

and tube formation, while laminin rich matrices promote endothelial stabilization and 

maturation through α6β1 and α3β1 (36).  In this sense, it is thought that the multiplicity of 

proteins in the ECM is able to function cooperatively to orchestrate the appropriate cell 

signals.  However, based on the large degree of functional overlap, it is impossible to 

assign clearly defined roles to each ECM and integrin constituent.  For instance, αvβ3, 

one of the most extensively studied angiogenesis-related integrins, binds specifically to 

the arginine-glycine-aspartate (RGD) motif, a peptide sequence common to a number of 

ECM proteins including collagen, fibronectin, vitronectin, and osteopontin.  Through 

these overlapping pathways, it is possible for the same integrin to convey different 

signals depending upon its mode of activation and the surrounding biological milieu.   
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The integrin(s) that control the ECM signaling pathways also depend upon the 

cell’s activation by other factors.  For example, studies have shown that the αvβ3 

signaling dominates during FGF induced angiogenesis, while αvβ5 dictates VEGF 

induced angiogenesis (37).  Other modes of cross talk are also thought to exist between 

the ECM and other angiogenic factors.  For instance, VEGF induces endothelial 

expression of α1β1 and α2β1, sensitizing these cells to ECM effects (38).  Furthermore, 

the ECM is thought to immobilize growth factors to the matrix in order to make them 

readily available to cellular receptors and to provide directional cues to the intracellular 

migratory machinery.  One example of this paradigm is illustrated by a study that showed 

that VEGF binds directly to fibronectin in a way that enables them to serve as signaling 

cofactors in the angiogenesis process (39).  It is obvious that ECM-integrin signaling 

represents an intricate system that plays a significant role in postnatal vascularization.  

While much knowledge has been garnered on the regulation of neovascularization at this 

level, there is clearly a lot left to learn about the complexities of this system, including its 

interrelationship with other growth factors and cellular activities that control vascular 

growth. 

The Role of Monoctyes / Macrophages 

 Although macrophages are not thought to be a substantial constituent of normal, 

healthy vasculature, it is well-known that they localize to the vascular wall at sites of 

angiogenesis and arteriogenesis where they play an important role in modulation of these 

processes (6).  Wolfgang Schaper has been a leader in this field and has extensively 

studied the role of these cells in models of ischemia since his initial observations of 

monocyte homing to the inner vascular surfaces of forming collateral vessels in a model 
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of coronary artery stenosis in dogs (40).  It was only shortly after this publication that 

activated macrophages were reported to also play a role in angiogenesis (41).  Subsequent 

studies have shown a direct functional link between circulating monocyte concentration 

and arteriogenic collateral vessel formation (42,43). 

Monocyte Chemotactic Protein 1 (MCP-1) is thought to be the primary stimulus 

for induction of monocyte infiltration and is known to play a role in mediating 

inflammatory related neovascularization (44).  Treatment with VEGF and FGF-2 has 

been found to induce MCP-1 expression in endothelial cells indicating crosstalk between 

MCP-1 and other angiogenic growth factors (45,46).  To further support this hypothesis, 

delivery of MCP-1 has been shown to accelerate collateralization and recovery in hind 

limb ischemia models in a wide range of rabbit, pig, and mouse studies (47-53).   

Conversely, animals deficient in MCP-1 or CCR2-chemokine receptor, an MCP-1 

receptor, have been shown to display reduced monocyte / macrophage infiltration and 

collateral formation (54,55).  These studies indicate that, once they home to the vascular 

wall, monocytes produce growth factors and proteases that induce vascular endothelial 

and smooth muscle cell proliferation and stimulate remodeling of the vascular wall in 

order to satisfy increased blood flow demands.  Taken together, these reports have 

convincingly shown that monocytes play an important role in mediating collateral vessel 

formation and that stimulating monocyte homing and survival at sites of arteriogenesis 

enhances collateral blood vessel formation.   

Endothelial Progenitor Cells 

  Nearly 10 years ago, Asahara and colleagues first isolated circulating endothelial 

progenitor cells (EPCs) from peripheral blood and showed that these cells were capable 
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of homing to sites of ischemia and incorporating into angiogenic vasculature (56).  

Shortly thereafter, using bone marrow transplantation techniques, Asahara et al. and Shi 

et al. reported that these circulating EPCs were mobilized from bone marrow and were 

capable of endogenously incorporating into angiogenic vasculature in skin wounds, sites 

of peripheral and myocardial ischemia, and developing tumors, in addition to lining the 

flow surfaces of implanted vascular grafts (9,57).  These discoveries spurred a rapid 

expansion in EPC research, which has created a plethora of generally positive, yet 

controversial data due to the lack of standardized cell isolation protocols and functional 

assays in this nascent field.  

 Since the inception of EPC research, numerous animal studies have been 

performed in multiple species to measure the regenerative and reparative potential of 

EPCs.  These studies have generally shown accelerated recovery following EPC delivery 

in animal models of myocardial and peripheral ischemia (reviewed in (58)).  Many of 

these authors have reported direct incorporation (albeit to varied degrees) of transplanted 

progenitor cells into the vascular endothelium in vivo using angiogenesis models of hind 

limb, myocardial, and cerebral ischemia and tumorigenesis (59-65).  However, this 

notion has been increasingly challenged.  Some recent studies have claimed that few or 

no EPCs actually incorporate into the endothelium, leading to the idea that the angiogenic 

effects of these progenitors may be primarily due to paracrine stimulation of tissue 

resident cells (66-71). 

 Human studies have further indicated that EPCs play a role in general endothelial 

maintenance and possess the potential to stimulate therapeutic angiogenesis and 

accelerate recovery following myocardial infarction.  It has been reported that EPC 
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counts serve as a potential marker of endothelial function and are inversely proportional 

to cardiovascular risk (72-74).  Likewise, diabetes, smoking and hypercholesterolaemia   

have been shown to decrease EPC counts, while statin therapy and regular exercise have 

been found to increase EPC number (73,75-80).  In terms of therapeutic angiogenesis, the 

TOPCARE-AMI (Transplantation of Progenitor Cells And Regeneration Enhancement in 

Acute Myocardial Infarction) study investigated effects of both circulating EPC and bone 

marrow derived progenitor infusion following AMI.  In this relatively small trial, safety 

and favorable effects on left ventricle (LV) remodeling were found following infusion of 

both progenitor cell types (81).  In a similar AMI trial, autologous bone marrow was 

found to lead to improved LV function relative to controls (82).   

One major shortcoming in the field of EPC research has been the inconsistent 

definition of the EPC itself.  Several animal studies have utilized unpurified bone 

marrow, which likely contains EPCs in addition to other progenitor cells.  Others have 

used magnetic bead or fluorescence activated cell sorting to obtain enriched cell 

populations based on co-uptake of acetylated ldl / lectin or expression of surface markers 

such as VEGFR2, CD31, CD45, CD105, CD133, Sca1, vWF, and VE-cadherin, with the 

most commonly used technique being isolation based on VEGFR2, CD31, and/or CD133 

expression.  It remains unclear whether different cell selection methodologies yield 

different cell populations or the same cell population at different stages of maturity, and it 

has not been clearly determined which if any of these populations might possess the 

greatest therapeutic potential.  Unfortunately, this lack of a consistent EPC definition and 

isolation protocol makes it difficult to draw conclusions based on direct comparisons 

between studies.  Clearly, many questions and controversy over EPC biology remain to 
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be resolved.  However, these cells undoubtedly possess great therapeutic potential, and 

preliminary success in animal and human trials demands further investigation and design 

of larger clinical trials.  

Inhibition of Neovascularization 

While the discussion up to this point has primarily focused on factors that 

stimulate neovascularization, excessive angiogenesis is believed to exacerbate certain 

pathological conditions including tumorigenesis, rheumatoid arthritis, and intraocular 

neovascular syndromes.  In this context, research has concentrated on inhibition of 

neovascularization.  It has been 35 years since Folkman originally proposed the idea that 

inhibition of angiogenesis could serve as a means for stopping tumor growth (83).  Then, 

in 1993 it was shown that VEGF neutralizing antibodies significantly attenuate tumor 

angiogenesis and growth in vivo, but it wasn’t until over ten years later that FDA 

approval was granted for the first anti-angiogenic agent for cancer therapy, bevacizumab 

(Avastin; Genentech) (84,85).  While bevacizumab is a neutralizing VEGF monoclonal 

antibody, many other approaches including but not limited to inhibiting VEGF receptor 

activation and administering soluble VEGF receptor or “VEGF traps” have been found to 

be effective means for anti-cancer therapy and are currently undergoing clinical tests 

(reviewed in (86,87)).  Meanwhile, analogous approaches for inhibition of 

neovascularization have also shown merit for treatment of macular degeneration and are 

being used clinically (88-90).  In addition to antagonism of VEGF signaling, other 

methods of angiosuppression are being tested clinically including exogenous delivery of 

naturally occurring angiogenesis inhibitors, inhibitors of proteases that facilitate ECM 
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degradation and vascular sprouting, and inhibitors of endothelial integrin (i.e. αvβ3) 

binding and activation (91-93). 

Experimental Models and Endpoints for Studying Angiogenesis 

With the recent expansion in research related to control of postnatal vascular 

growth, the requirement for quantitative, physiologically relevant models for preclinical 

studies has become increasingly apparent.  Although in vitro studies can serve as a useful 

initial screening tool for potential stimulants or inhibitors of endothelial cell function and 

growth, their relevance is often compromised by the fact that they lack the inherent 

complexity and milieu of cell types and factors present in vivo.  On the other hand, in 

vivo animal models obviously present the most appropriate systems for testing angiogenic 

substances, yet they often lack reproducibility due to technical difficulty and variability 

between animals, physiologically relevant stimuli, and endpoints amenable to 

quantitative analysis.  The subsequent discussion on in vitro and in vivo techniques 

covers some of the common and most relevant angiogenesis models but is by no means 

meant to be all-inclusive.    

Cell proliferation, migration, and tube formation in response to specific 

angiogenic modulators comprise the majority of in vitro studies.  Cell proliferation 

studies typically measure replicating cells through incorporation of a fluorescent or 

radiolabeled thymidine analogue or quantification of total cell number using colorimetric 

/ fluorescent readings based on dye-DNA complexes.  Migration and chemotaxis assays 

typically employ cell culture inserts that can be placed into multi-well tissue culture 

plates.  The cells are seeded into these inserts, which contain a membrane with a pore size 

ranging from approximately 3-10 microns.  Then, the chemotactic agent is placed into the 
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media in the bottom of the well in order to stimulate cell migration from the top of the 

membrane into the lower chamber containing the chemotactic substance.  Lastly, at a 

chosen endpoint, the remaining cells can be removed from the top of the membrane, and 

the cells that have migrated to the lower side are stained and counted using microscopy.  

The monolayer scratch assay provides a separate and somewhat crude, but effective 

migration assay.  This technique involves creation of a “wound” in the endothelial 

monolayer using a pipette tip and then monitoring migration (and proliferation if the 

endpoint is long enough) of the cells into the scratch.  Lastly, endothelial cells can be 

cultured in 3-D in matrigel to assess tube-forming capabilities of endothelial cells under 

specific stimuli.  Each of these in vitro methodologies possesses merit in certain 

applications, particularly as an initial platform for screening the effects of potentially pro- 

or anti-angiogenic substances.  These assays are well controlled, repeatable, and 

generally quantitative, yet their relevance can be limited by the absence of many of the 

important modulators present in vivo.  One problem is that, due to repeating tissue culture 

passaging, cells are selected for a more proliferative phenotype than what is present in 

vivo.  Also, cells are often isolated from a species (i.e. bovine) and from an anatomical 

location (ie. vein or large arteries such as aorta) that don’t necessarily make them good 

models of the human microvascular endothelium that would typically participate in an 

angiogenic response. 

As an intermediate to in vitro and in vivo studies, researchers commonly use ex 

vivo organ culture assays.  The most common of these is the aortic ring vascular 

sprouting assay.  This assay involves embedding aortic rings into either collagen gels or 

fibrin clot and has been utilized in explants from both mice and rats.  Rat explants have 
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been found to sprout endothelial tubes in serum free conditions, while mouse specimens 

require homologous serum in order to consistently form angiogenic extensions from the 

aortae (94-96). This assay provides a more complete environment including non-

endothelial cell types, lacks artifacts introduced from extended tissue culture passaging, 

yet offers a good deal of the experimental control afforded by in vitro studies.  However, 

as mentioned for in vitro studies, use of the aorta is not an ideal choice for modeling the 

microvascular endothelium.  

Following initial screening tests based on in vitro and / or ex vivo studies, animal 

experimentation is a necessity prior to testing potential angiogenic modulators in human 

trials.  The chick chorioallantoic membrane (CAM) is one of the oldest, simplest, and 

most popular in vivo angiogenesis assays (97,98).  It is generally considered an in vivo 

assay because it is a test carried out on a whole animal (embryo).  In this assay, an 

angiogenic substrate is placed directly onto the CAM and then tested for its ability to 

either inhibit or increase vascular development in this area of the embryo.  This assay is 

relatively easy, inexpensive, and high throughput, but doesn’t provide maximum utility 

due to its use of chick cells, lack of quantification, and difficulty in discriminating 

between effects of the tested agent and the rapid vascular changes that are naturally 

occurring during embryonic development.   

The next group of commonly employed in vivo angiogenesis models involves 

subcutaneous placement of angiogenic substrates.  These types of models involve 

implantation of a sponge or matrigel plug under the dorsal skin to induce neovascular 

ingrowth (99-102).  This model also allows for delivery of angiogenic modulators, which 

can be done using osmotic mini-pumps.  This procedure is simple and easy to replicate, 
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but it does not use a site where angiogenesis typically occurs in vivo and is confounded 

by the non-specific inflammatory response the results from implantation of the material. 

Corneal angiogenesis assays are another popular mechanism for in vivo screening 

of angiogenesis related compounds.  The cornea is naturally avascular and therefore 

provides a good test bed for neovascularization studies, and this model has been used in 

multiple species including rabbits and mice (103-106).  In this method, a small pocket is 

made in the cornea, and slow release formulations of angiogenic factors or tumor 

cells/tissue can be introduced into this pocket in order to induce vascular growth toward 

this stimulus.  For testing anti-angiogenic therapies, the therapeutic agent is generally 

administered systemically and tested for its ability to inhibit angiogenesis towards the 

pro-angiogenic corneal implant.  Neovascularization can be tracked longitudinally in vivo 

using a stereoscope or with histology at predetermined endpoints.   The main advantage 

of this assay is that all measurable vasculature is neoangiogenic in nature and does not 

have to be discriminated from preexisting vessels.  However, this assay is technically 

demanding, and the fact that angiogenesis does not normally occur in avascular regions in 

vivo diminishes the assay’s relevance. 

The last set of models to be discussed involves ischemia and arterial blockage 

induced vascular growth.  These animal studies have been performed in a variety of 

species, particularly rats, rabbits, and mice, and typically test the effects of agents for 

therapeutic stimulation of neovascularization for alleviation of peripheral or coronary 

artery disease (107-110).  These models involve ligation of a proximal conduit artery (ie. 

femoral artery), which provides a reproducible, physiologically relevant stimulus for a 

vascular response.  This insult stimulates a combination of ischemia-induced 
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angiogenesis in addition to arteriogenesis triggered by changes in arterial flow patterns 

within the preexisting vasculature.  This complex stimulus is likely the most relevant 

model of human ischemic diseases, but offers the added problem of discriminating 

neoangiogenic and arteriogenic vessels from each other and from the preexisting 

vasculature.  In addition, this model is time intensive and relatively expensive due to the 

number of animals necessary to detect differences due to inherent animal-to-animal 

variability and lack of sensitive methods for endpoint quantification.  This model is also 

particularly useful for studies of transgenic or knockout animals since it can be readily 

applied to mice (107).  When considering methods for inducing tissue ischemia versus 

the previously discussed models, one must consider the different levels of complexity and 

potential merit of each model depending upon the setting being studied (pro- versus anti-

angiogenic therapy) and the available resources.     

As mentioned, in addition to inherent animal-to-animal variability and user 

variability due to technical difficulty in implementation of animal models, in vivo studies 

are further complicated by lack of objective, quantitative methods for endpoint analysis.  

It is generally understood that collateral vessel formation can help to functionally 

compensate for obstructive vascular lesions in patients with atherosclerosis and that 

animal models of vessel blockage are vital to preclinical research that tests the efficacy 

and safety of therapeutic agents delivered to stimulate reperfusion of ischemic tissues.  

While the utility of the hind limb ischemia model is particularly well established in this 

arena, the available methodologies for quantification of collateral vessel development in 

this setting are not ideal.   
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Investigators have utilized a variety of techniques to evaluate vascular structures 

in this animal model.  Histology is commonly employed to analyze capillary or arteriole 

density, but it is relatively subjective, not truly quantitative, two-dimensional (2-D), and 

not necessarily representative of vascularity throughout the entire sample.  Laser Doppler 

perfusion imaging (LDPI) has been used to analyze blood flow in hind limbs because it 

offers quantitative data and a good measure of tissue perfusion (5,107,111-113).  

However, this technique does not provide anatomical information and is limited by the 

fact that only the most superficial, cutaneous blood flow is measured.  Another popular 

technique, X-ray microangiography, provides high-resolution, 2-D angiograms of the 

hind limb vascular anatomy but lacks the ability to employ a quantitative, volumetric 

analysis (113-115).  Injection of colored or fluorescent microspheres presents a method 

for longitudinal study of reconstitution of perfusion to ischemic tissues using quantitative 

spectrophotometry or flow cytometry analyses (116-120).  However, the required arterial 

catheterization or injection of microspheres into the left ventricle or atrium presents a 

considerable challenge in mice because of their small size.  Other imaging modalities 

such as magnetic resonance angiography and positron emission tomography serve as 

viable methods for analyzing vascularity, but the resolution of these methods is typically 

not sufficient for studies involving small animals.  Micro-CT has emerged as a promising 

technology that can overcome several of the challenges associated with evaluation of 

vascular networks.  Recently, vascular imaging procedures have been developed for 

small animal models based on the use of perfused contrast agents and X-ray micro-CT 

(121-129).  The goal of these studies has been to visualize 3-D vascular networks in 
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organs (i.e. heart and kidneys) or tumors, and more recently, we have extended these 

techniques into analysis of neovascularization and collateral vessel development (130).   

Micro-CT Imaging 

Hounsfield originally introduced computed tomography in the early 1970’s, an 

invention that eventually earned him a Nobel prize (131,132).  In the late 1980’s, 

Feldkamp et al. pioneered the field of three-dimensional computed tomography on the 

micron scale (micro-CT) for analysis of bone micro-architecture (133).  Since then, the 

field of micro-CT has advanced tremendously, and commercially available micro-CT 

systems have become a major component of many research laboratories.  These systems 

combine a microfocus X-ray source, a detector, and a cone-beam reconstruction 

algorithm to nondestructively recreate a 3-D object (see Figure 2.3 A).  Using this setup, 

the specimen is rotated on a fixed stage while an X-ray source is passed through it.  

However, newer generation scanners exist that allow for in vivo scanning of anesthetized 

animals.  In these systems, the animal remains stationary and the x-ray source and 

detector rotate around the specimen.  The detector then records the intensity of the 

attenuated X-ray beam that has passed through the specimen.  This projection value 

recorded by the detector is a function of the thickness and linear attenuation coefficient of 

the material through which the X-ray beam has passed.  This relationship can be 

described by Lambert’s law of absorption where I is the recorded beam intensity after 

passing through the specimen, Io is the unattenuated beam density, µ is the linear 

attenuation coefficient of the material within the sample, and x is the thickness of the 

material. 

Equation 2.1.    x
oeII µ−=  
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Based on the intensity of the X-ray projections recorded as the specimen (or 

source) is advanced through multiple rotational positions, serial, two-dimensional 

attenuation maps (tomograms or slices) are reconstructed from the raw data using a cone 

beam filtered backprojection algorithm (see Figure 2.3 B) (134).  During the 

reconstruction of image projections, a grayscale value that represents the capacity of the 

material within that space to attenuate x-rays is assigned to each voxel.  These grayscale 

values within the 2-D slices represent the linear attenuation coefficient of the material 

within the voxel space, which is a function of the X-ray source and the atomic 

composition of the material sample.  Then an image threshold is defined, which 

represents the cutoff grayscale (attenuation) value that partitions the image voxels into 

either the background or the segmented object.  During the thresholding process, if the 

grayscale value for the voxel is higher than the assigned threshold, it remains in the 3-D 

image as part of the segmented object.  After application of the global attenuation 

threshold value, the binarized tomograms are used to render a 3-D image of the 

segmented object.  Morphometric analysis based on model independent, direct distance 

transform methods can be subsequently applied to the 3-D images to quantify parameters 

of morphology, anisotropy, and connectivity (135-137). 

As mentioned, due to the inherent radiodensity of hard tissue, initial micro-CT 

related work was done in the bone field.  However, more recent applications in micro-CT 

imaging have evolved into analysis of biomaterials, soft tissues, and skeletal development 

(138,139).   However, due to the comparatively low radiodensity of soft tissues and 

vasculature, application of a radiopaque contrast agent is necessary.  For these 

applications and countless others not mentioned here, micro-CT presents many 
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advantages over other, traditional methods of specimen imaging and analysis.  Since the 

imaging process is nondestructive, the internal features of the same sample may be 

examined multiple times, and samples remain available after scanning for additional 

biological or mechanical testing.  Specifically, micro-CT is often advantageous over 

other methods because it provides high resolution, quantitative, 3-D, and completely 

objective data analysis.  Relative to micro-CT, histology and microscopy, the traditional 

standards in tissue specimen analysis, require destructive tissue processing, lack the 

ability to employ a quantitative 3D analysis, and require increased sample preparation 

and analysis time. 

 

A 

X-RAY

DETECTOR

SPECIMEN

X-RAYX-RAY

DETECTOR

SPECIMENSPECIMEN

B  

Figure 2.3.  Micro-CT Components and Image Reconstruction.  (A) Schematic view of 
the basic components of micro-CT  imaging systems.  An X-ray source is passed through 
a rotating specimen, and the transmitted signal is detected on the other side.  (B)  
Schematic of the computed tomography process and illustration of the method for 
reconstruction of micro-CT images from X-ray projections (borrowed from (140)). 
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Bone Fracture Healing 

Unlike soft tissue injuries, which generally result in scar tissue formation, bone 

healing involves regeneration of the native tissue in a unique process where the original 

tissue properties are largely restored.  The capacity for true tissue regeneration in adults is 

thought to be due to the fact that fracture repair to a large degree recapitulates the process 

of embryonic skeletal formation (141).  The majority of bone fracture healing cases 

involve both intramembranous (direct bone formation) and endochondral ossification 

(bone formation through a cartilage intermediate).  Rarely does primary bone healing 

occur through an intramembranous ossification route, and this is thought to occur only 

when contact is restored and rigidly fixated between fractured bone ends (142).  

Conversely, the endochondral route of bone repair is thought to dominate in less 

stabilized fractures, and it is this process that closely resembles fetal endochondral 

ossification (141,143).   

The majority of bone healing occurs through indirect fracture healing, which 

involves a combination of intramembranous and endochondral ossification.  This 

involves a highly coordinated cascade of biological events that includes, in temporal 

order, hematoma formation, inflammation, soft cartilaginous callus formation, 

neovascularization, osteoblastic callus mineralization, and osteoclastic remodeling of the 

woven bone hard callus into lamellar bone (144).  The morphological changes that occur 

during fracture healing are highlighted in the histology images shown in Fig 2.4.  This 

cascade of events is orchestrated by a variety of cell types, starting with bone marrow, 

periosteal, and tissue resident cells which subsequently chemoattract or differentiate into 

inflammatory  cells, endothelial  cells, fibroblasts, chondrocytes, osteoclasts, osteoblasts, 
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Figure 2.4.  Histological time course of fracture healing.  H&E staining of 5 micron 
paraffin embedded histological sections is shown to illustrate the time course of fracture 
healing in a mouse femoral fracture model.  Note that surrounding soft tissues were left 
intact on the 3-day histological specimen, but the fracture callus was dissected away from 
the surrounding musculature at other time points.  (A) At 3 days post fracture, inflammatory 
cells have migrated to the fracture site and produced cytokines that induce MSC migration, 
proliferation, and formation of an initial layer of fibrous connective tissue for stabilization 
of the fracture site.  (B) By 7 days post fracture, endochondral ossification has ensued, as 
indicated by the proliferation and differentiation of MSCs into a cartilaginous soft tissue 
callus at the fracture site.  Note that a modest amount of intramembranous bone formation 
can be seen at the periosteal region of the cortex immediately adjacent to the fracture site.  
Also, neovascularization, while not evident in these images, has begun to occur at the ends 
of the fracture callus.  (C) Later, by 14 days post fracture, chondrocyte hypertrophy is 
evident within the remaining soft fracture callus, and cartilage adjacent to the fracture has 
begun to mineralize and undergo resorption.  At this point a substantial amount of vascular 
invasion has occurred, which is thought to be directly coupled to onset of mineralization 
and chondrocyte removal from the soft callus.  (D) By 28 days, the mineralized cartilage 
has been replaced by remodeling woven bone, and a bony bridge has formed across the 
fracture gap.  (E) At 56 days, the woven bone of the fracture callus has remodeled inward, 
and the remaining tissue is continuing to approach the structure of the native lamellar bone.    
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and osteocytes.  During this complex sequence of biological activity, functionality of 

these cell types is regulated by a variety of cytokines, growth factors, and matricellular 

proteins that induce differentiation, chemotaxis, and haptotaxis of the cell types 

responsible for mediating these events. 

Recent studies have helped to elucidate the roles of many of these signaling 

molecules in bone healing.  In initial stages of healing, pro-inflammatory cytokines such 

as interleukin-1 and tumor necrosis factor-alpha have been found to be highly expressed 

by inflammatory cells and are thought to play an important role in initiating the repair 

process by stimulating chemotaxis and proliferation of other cell types at the fracture site 

(145,146).  Other studies have detailed the importance of soluble growth and 

differentiation factors during fracture healing.  For example, the family of bone 

morphogenic proteins (BMPs), a subset of the transforming growth factor-beta 

superfamily, has been thoroughly characterized for induction of osteogenesis at fracture 

sites and is utilized clinically to promote bone regeneration (147).  The BMPs, which 

bind extracellular receptors and activate intracellular signaling cascades, are thought to be 

the key regulators of bone formation and have also been characterized for their ability to 

couple the biological processes of angiogenesis and bone formation (148-150).  This 

coupling is particularly important considering that vascular invasion of the fracture callus 

is thought to be a necessity for normal bone repair, specifically for triggering conversion 

of the cartilage callus into the mineralized, hard callus.  For example, Street et al have 

shown that VEGF, a known promoter of angiogenesis, stimulates neovascularization and 

promotes fracture healing, while treatment with angiogenesis inhibitors that specifically 

target vascular cells blocks fracture healing and produces atrophic nonunions (151,152).    
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Furthermore, it has been shown that fracture repair is impaired in MMP9 deficient mice 

as a result of reduced angiogenic capacity in these mice (153).  Lastly, ECM proteins 

play an important role in regulation of bone healing.  As reviewed by Alford et al., 

extracellular matrix (ECM) proteins, while not always vital for normal embryonic bone 

development, play an important role in mediating cellular function and serve as important 

modulators of bone regeneration (154).  Non-collagenous ECM proteins interact with 

other matrix proteins, cellular receptors such as integrins, and soluble growth factors and 

proteases.  In this way, they play a role in modulation of matrix organization and 

remodeling, cellular function, and hence, the fracture healing process.  Further 

understanding of the intricate interplay between this diverse set of cell types, endogenous 

factors, and matrix proteins is a necessity for the development of improved therapeutic 

strategies for promoting bone repair. 

Osteopontin 

OPN Structure and Function 

OPN, generally an ECM protein, is synthesized as a 34-kDa protein and is 

especially prominent in the matrix of mineralized tissues (see Figure 2.5 for an 

illustration of some of the features of OPN).  It undergoes a large degree of post-

translational modification and, depending upon tissue type, is secreted with varied 

degrees of phosphorylation and glycosylation.  It also binds to hydroxyapatite, contains a 

thrombin cleavage site, and, due to its acidic nature and negative charge, binds to 

calcium.   In addition, OPN possesses multiple cell recognition motifs and functions in a 

variety of biological processes including but not limited to inflammatory response, 

immunity, angiogenesis, wound  repair, tumor  formation  and  metastasis,  cell  adhesion, 
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Figure 2.5.  Schematic of human OPN.  The structure shown here highlights the binding 
domains of OPN that are thought to confer its biological activity.  O-glycosylation and 
phosphorylation sites are meant to be representative and can vary depending upon tissue 
localization, etc.  Schematic redrawn and adapted from (155). 
 

 

cell migration, and bone mineralization and remodeling.  Through its multiple cellular 

binding sites, OPN is able to interact with multiple cell surface receptors and activate 

intracellular activity that elicits downstream cellular functions.  While OPN is generally 

considered to fall into the general group of “noncollagenous ECM proteins”, it has more 

recently become known by some as a matricellular protein (156).  This categorization has 

been created for nonfibrillar ECM proteins that mediate cellular functions by providing a 

functional link between cell surface receptors, ECM molecules that are primarily 

structural in form, and more biologically active cytokines, growth factors, and proteases.  

By these means, it is likely that OPN is capable of eliciting a diversity of specified 

biological responses based on local content of the structural matrix, availability of 
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bioactive molecules, interactions with different cell types or surface receptors, and its 

own state of cleavage, phosphorylation, and glycosylation.    

OPN Cellular Interactions 

The integrin family and CD44 (hyaluronic acid receptor) are the two classes of 

cell surface receptors known to interact with OPN.  As mentioned previously, integrin-

mediated signals provide a vital link between the cells and their environment and 

represent an important point of control in the neovascularization process.  OPN 

interaction with heterodimeric integrin receptors is not only able to mediate cellular 

adhesion to the matrix, but also activate intracellular second messengers, which 

propagate signals to the nucleus and alter gene expression.  The integrin receptors known 

to interact with OPN include αvβ1, αvβ3, αvβ5, α4β1, α5β1, α8β1, and α9β1.  The majority of 

these interactions occur through the RGD site, a common three amino acid recognition 

sequence found in OPN and other ECM proteins, except for α4β1 and α9β1, which interact 

with a more novel serine-valine-valine-tyrosine-glycine-leucine-arginine (SVVYGLR) 

binding sequence (155,157-161).  The interaction of OPN with many of these integrins is 

regulated by thrombin cleavage, which is thought to increase accessibility of cell 

receptors to their binding domains and greatly enhance the cellular effects of OPN in 

many cases (162).  Different integrins respond differently to the full length versus 

cleavage fragments, indicating that this represents a key point of regulation of OPN 

function.  For example, while α5β1 reacts with the RGD sequence and α9β1 with 

SVVYGLR, both of these integrins are believed to only interact with OPN cleavage 

fragments and not the full length protein (159,161).  In addition, while the SVVYGLR 

fragment, which is located between the RGD and thrombin cleavage sites, can only be 
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bound by α9β1 following cleavage, α4β1 is able to interact with OPN before and after 

cleavage (158,161).  Integrin-OPN interactions can also be cell specific.  For example, 

αvβ3 adhesion of B lymphocytes to the RGD site of OPN is greatly enhanced following 

thrombin cleavage, but αvβ3 platelet adhesion to OPN’s RGD motif is no different in full 

length versus cleaved OPN (163).  It is this cell specific control of binding to a 

multiplicity of integrin receptors that likely affords OPN the ability to convey a diversity 

of signals to multiple cell types. 

 The other commonly studied OPN receptor, CD44, is a cell surface glycoprotein 

involved in cell-to-cell interactions, in addition to cell adhesion and migration.  Its 

principal ligand is considered to be hyaluronic acid, but it also binds to other ECM 

proteins such as OPN, fibronectin, collagen, and laminin.  Alternative splicing into 

functionally distinct isoforms are thought to confer the multifunctionality of CD44 (164).  

Weber et. al  initially reported the CD44-OPN receptor-ligand interaction and postulated 

that this relationship may be important for induction of cellular chemotaxis during 

metastatic tumor cell invasion (165).  Later, it was found that different splice variants of 

CD44 can interact with multiple domains on both the amino- and carboxy-terminal 

portions of OPN independent of the RGD motif in order to stimulate cell motility and 

chemotaxis (166).  More recently, Zohar and colleagues determined that the interaction of 

CD44 and other molecules with an intracellular, unsecreted form of OPN (iOPN) is an 

integral component in cell migration of multiple cell types including embryonic 

fibroblasts, activated macrophages, and metastatic cells (167).   

 As mentioned, OPN acts through these receptors primarily to control cell 

adhesion, migration, and chemotaxis.  Studying the role of these interactions in 
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tumorigenesis, inflammation, and wound repair have all been well-represented areas of 

research.  In the cancer field, OPN is thought to be related to both tumorigenesis and 

metastasis, and it was long ago found to be a secreted by transformed cells in culture 

(168).  As reviewed by Rittling and authors, numerous studies have reported that 

increased OPN expression in tumors and in the blood correlate with advanced 

tumorigenesis and metastasis, but its mechanistic role in cancer remains unclear (169).  

OPN has also been described for its role in immune and inflammatory responses.  It is 

expressed in response to inflammatory cytokines, serves as a chemoattractant to 

macrophages, and plays a role in immune response to viral and bacterial infection (155).  

The effects of OPN on macrophage function are likely a contributing factor to the larger 

role that OPN plays in tissue remodeling and wound repair.  In fact, upon the initial 

development of the OPN knockout mouse, the primary phenotype of these animals was 

reported by Liaw et al. to be diminished macrophage activity and matrix reorganization 

following skin injury (170).  It is noteworthy that some very recent studies have indicated 

that OPN plays a role in regulation of the stem cell niche and progenitor mobilization 

from the bone marrow, but the physiological relevance of this finding remains to be seen 

(171,172).  While OPN has implications in these and other normal and pathological 

processes, the properties of OPN relevant to postnatal vascular growth and bone fracture 

healing are of primary interest to this thesis.  

Vascular Functions of OPN  

While many researchers initially studied OPN for its role in bone, it is also 

important for normal arterial physiology (173) and is produced by all of the primary cell 

types involved in blood vessel growth and remodeling: monocytes/macrophages, 
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endothelial cells, and smooth muscle cells (174).  Previously reported in vitro studies 

have demonstrated that vascular cell interactions with OPN mediated through cell surface 

integrins regulate a wide variety of cellular functions that are potentially important to 

angiogenesis and arteriogenesis.  For example, OPN signaling through the αvβ3 integrin 

has been found to mediate endothelial cell survival in a process that involves the NF-κB 

signaling pathway (175).  Also, the angiogenic growth factor VEGF has been shown to 

trigger an increase in αvβ3 expression, OPN expression, and thrombin cleavage of OPN, 

which provides a cooperative mechanism that triggers a tremendous enhancement of 

endothelial cell migration (176).  In addition, OPN expression is induced by stimulation 

with FGF, and this cross-talk may provide a mechanism for recruitment of monocytes 

and amplification of FGF-induced angiogenesis (177).  Also, OPN mediates several 

processes relevant to arteriogenic collateral vessel formation including adhesion and 

migration of both macrophages and smooth muscle cells. (178-180).   

Several studies have also suggested an in vivo role for OPN in neovascularization.  

For example, OPN has been associated with the angiogenesis-related processes of tumor 

growth and metastasis in lung, breast, bone, and other tissues, indicating an active role of 

this protein in blood vessel growth (181-185).  Another recent study showed that OPN 

mRNA is locally upregulated at the site of ischemia induced retinal neovascularization in 

mice (3).   Also, in a study on the role of OPN in mediating osteoclast function, OPN 

deficient mice were found to display decreased resorption of ectopic bone implants, an 

effect the authors hypothesized to be secondary to reduced angiogenesis in these animals 

(2).  These studies and others implicate OPN in angiogenesis outside the context of 
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tumorigenesis, but no studies to date have fully elucidated the in vivo role of this factor in 

regulating postnatal blood vessel growth.  

OPN in Bone  

OPN, a multifunctional protein, is one of the major non-collagenous proteins in 

bone extracellular matrix, and it has been most extensively studied for its role in control 

of mineralization and remodeling in bone tissue.  In normal murine bone, OPN is 

expressed by osteoblasts, osteocytes, and hypertrophic chondrocytes (186).  OPN 

deficient mice have no obvious bone phenotype, and OPN was originally reported to play 

no major role in normal bone development (170,187).  However, in vitro studies have 

indicated that OPN binds tightly to hydroxyapatite, which leads to an inhibition of 

mineral crystal formation and growth (188,189).  Correspondingly, subsequent studies 

using Fourier transform infrared imaging found that OPN deficient mice possessed 

increased mineral content and crystallinity (190).  While OPN deficiency was originally 

found to result in grossly normal bones, initial reports found that osteoclast formation 

from OPN deficient cells was abnormal in vitro (187).  More recent studies have found 

that OPN-CD44 interaction is of great importance in bone tissue due to its role as an key 

mediator of osteoclast recruitment and function (187,191,192).  The in vivo importance of 

this interaction during bone remodeling has been further demonstrated by the fact that 

OPN deficient mice undergo significantly less bone resorption compared to wild type 

mice in response to reduction in mechanical loading, ovariectomy, stimulation by 

parathyroid hormone, or administration of a high phosphate diet (193-196).   

 In terms of bone fracture healing, in situ hybridization studies have noted OPN 

expression in the fracture callus by osteoprogenitors in woven bone, hypertrophic 
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chondrocytes in the transitional are between cartilage and bone, and in the osteocytes, 

osteoblasts, and osteoclasts of the hard callus (144,197,198).  In addition, OPN and CD44 

have been shown to be colocalized during late stage remodeling of the hard fracture 

callus, which indicates that the interaction of these molecules may also play a role in 

bone remodeling during fracture healing (197).  Based on these observational data gained 

from studying the temporal and spatial expression of OPN, scientists have speculated that 

OPN plays an important role in triggering mineralization during fracture healing (199).  

However, based on studies in tumorigenic and cardiovascular tissues, whether OPN 

initiates or inhibits ectopic calcification remains unclear (200,201).  In addition, although 

OPN is considered a primary marker of osteoblast differentiation, a recent report suggests 

that OPN is a negative regulator of proliferation and differentiation of osteoblasts and 

found that overexpression of OPN inhibited mineral deposition (202).  Furthermore, OPN 

is thought to be vital for osteoclast function and bone remodeling (191,192).  Considering 

this diversity of sometimes conflicting data, the overall effect of OPN on fracture healing 

remains to be understood.  Therefore, this thesis project has sought to more clearly 

elucidate the role of OPN in fracture healing in vivo.  
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CHAPTER 3 

QUANTITATIVE MICROCOMPUTED TOMOGRAPHY  

ANALYSIS OF COLLATERAL VESSEL DEVELOPMENT 

FOLLOWING ISCHEMIC INJURY  

Introduction 

Collateral vessel formation can functionally compensate for obstructive vascular 

lesions in patients with atherosclerosis.  Animal models of peripheral limb ischemia play 

a vital role in preclinical research efforts that test the efficacy of administering 

angiogenic factors and other therapeutic agents to stimulate formation of collaterals to 

compensate for blocked arteries.  One such model, the mouse hind limb ischemia model, 

has been used extensively in efforts to define the mechanisms involved in postnatal blood 

vessel formation (107).  While the utility of this model is well established, the available 

methodologies for quantification of collateral vessel development in this setting are not 

ideal.   

In the context of hind limb ischemia, three different mechanisms may contribute 

to reconstitution of limb perfusion.  Angiogenesis involves sprouting or intussusception 

of new capillaries from pre-existing vessels and is triggered by tissue ischemia.  

Arteriogenesis occurs when preexisting arterioles dilate and remodel through endothelial 

and smooth muscle cell expansion to meet increased physiologic demands (5,6).  It is 

generally accepted that this process, which is mediated at least in part by monocytes and 

macrophages, is triggered by the increased shear stress that occurs in small, interarterial 

anastomoses following occlusion of a parent artery (7).  Finally, there is evidence that 
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vasculogenesis or de novo blood vessel formation by bone-marrow derived endothelial 

progenitor cells may play a role in post-natal vessel growth, although this remains 

controversial (9).  Collateral vessel growth, primarily via an arteriogenic pathway, is 

widely believed to be the most efficient means for reconstituting perfusion following 

arterial occlusion (5).  

Investigators have utilized a variety of techniques to evaluate vascular structures 

in animal models.  Histology is commonly employed to analyze capillary or arteriole 

density, but it is relatively subjective, not truly quantitative, 2-D, and not necessarily 

representative of vascularity throughout the entire sample.  Laser Doppler perfusion 

imaging has been used to analyze functional blood flow in hind limbs because it offers 

semi-quantitative data and a measure of functionality (5,107,111-113).  However, this 

technique does not provide anatomical information and is limited by the fact that only the 

most superficial, cutaneous blood flow is measured.  Another popular technique, x-ray 

microangiography, provides high-resolution, 2-D angiograms of the hind limb vascular 

anatomy but lacks the ability to employ a quantitative, volumetric analysis (113-115).  

Injection of colored or fluorescent microspheres presents a method for longitudinal study 

of reconstitution of perfusion to ischemic tissues using quantitative spectrophotometry or 

flow cytometry analyses (116-120).  However, the required arterial catheterization or 

injection of microspheres into the left ventricle or atrium presents a considerable 

challenge in mice because of their small size.  Other imaging modalities such as magnetic 

resonance angiography and positron emission tomography serve as viable methods for 

analyzing vascular function, but the resolution of these methods is typically not sufficient 

for studies involving small animals.    
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Micro-CT has emerged as a promising technology that can overcome several of 

the challenges associated with evaluation of vascular networks.  Recently, vascular 

imaging procedures have been developed for small animal models based on the use of 

perfused contrast agents and x-ray micro-CT (121-129).  The goal of these studies has 

been to visualize 3-D vascular networks in organs (i.e. heart and kidneys) or tumors.  The 

objective of the current study was to use micro-CT vascular imaging methods to examine 

the time course of collateral formation induced by femoral artery excision in the mouse 

hind limb ischemia model.  In addition to vessel volume, measures of vascular network 

morphology and anisotropy were quantified and the effects of varying the imaging 

parameters voxel size and binarization threshold were analyzed.  The developed micro-

CT-based techniques represent an innovative and quantitative approach for investigating 

3-D vascular responses associated with a broad range of conditions, including vascular 

injury, tumorigenesis, coronary artery disease, aneurysm formation, skeletal 

development, and fracture healing.  In these settings, micro-CT imaging in combination 

with an appropriate contrast agent has the potential to overcome the shortcomings of 

other vascular imaging techniques because it can provide high resolution, volumetric, 

objective, and highly quantitative analyses. 

Methods 

Animals 

Male C57BL/6 mice were purchased from the Jackson Laboratory (Bar Harbor, 

ME).  All mice were between 10 and 11 weeks of age.  The animals were fed a standard 

chow diet ad libitum and had free access to water.  All protocols were approved by the 
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Institutional Animal Care and Use Committee of Emory University and done in 

accordance with the NIH guidelines for the care and use of experimental animals.      

Hind Limb Ischemia Model  

To study collateral formation, we utilized the well characterized mouse hind limb 

ischemia model (107).  Animals were anesthetized by intraperitoneal injection of 

xylazine (10 mg/kg) and ketamine (80 mg/kg).  All hair was removed from the surgical 

site and the area was thoroughly cleansed with sterile water.  A unilateral incision was 

then made over the right medial thigh of the mouse.  The superficial femoral artery and 

vein were ligated proximal to the caudally branching deep femoral artery, and then a 

second ligation was performed just proximal to the branching of the tibial arteries.  The 

length of the artery and vein was excised between the two ligation points, and the skin 

was closed with interrupted silk sutures.  After awakening, animals were returned to their 

cages and allowed to ambulate freely.  The mice were euthanized post-operatively for 

microcomputed tomography imaging at 0 (n=7), 3 (n=6), and 14 (n=5) days or 

histological analysis at 14 days (n=3).  

Imaging Specimen Preparation 

Tissues were prepared in concordance with previously described methods (121).  

Following euthanization, the thoracic cavity was opened and the inferior vena cava was 

severed.  The vasculature was flushed with 0.9% normal saline containing heparin 

sodium (100 units/mL) at a pressure of approximately 100 mm Hg via a needle inserted 

into the left ventricle.  Specimens were then pressure fixed with 10% neutral buffered 

formalin.  Formalin was flushed from the vessels using heparinized saline, and the 

vasculature was injected with either a 15% barium sulfate, 2% gelatin suspension or a 
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radiopaque silicone rubber compound containing lead chromate (Microfil MV-122, Flow 

Tech Inc., Carver, MA).   

In preliminary studies using barium-gelatin mixtures as the contrast agent, 15% 

barium sulfate and 2% gelatin were suspended into saline.  To prepare the contrast agent 

for perfusion, the gelatin was added a small amount at a time as the saline was heated on 

a stir plate.  The barium was subsequently added to the solution and the suspension was 

stirred until any clumps had dispersed.  The warmed solution was then perfused into the 

animal, which was subsequently placed on ice for one hour to promote gelling of the 

suspension within the vasculature.  Samples were then stored at 4 °C in 10% neutral 

buffered formalin until imaging.    

For studies using the silicone rubber injection agent, the manufacturer’s protocol 

was followed with the exception that no diluent was used in order to maximize the lead 

chromate content.  Samples were stored at 4°C overnight for contrast agent 

polymerization.  Mouse hind limbs were dissected from the specimens and soaked for 4 

days in 10% neutral buffered formalin to ensure complete tissue fixation.  Tissues were 

subsequently treated for 48 hours in a formic acid based solution, Cal Ex II (Fisher 

Scientific, Pittsburgh, PA), to decalcify the bone and facilitate image thresholding of the 

hind limb vasculature from the surrounding tissues.  Samples were rinsed thoroughly, 

soaked for 1 hour in water, and then stored at 4 °C in 10% neutral buffered formalin until 

microcomputed tomography imaging. 

Micro-CT Imaging 

Hind limb vasculature was imaged using a high-resolution (8-36 µm isotropic 

voxel size) desktop micro-CT imaging system (µCT 40, Scanco Medical, Bassersdorf, 
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Switzerland).  The scanner was set to a voltage of 55 kVp and a current of 145 µA.  

Resolution was set to medium, which created a 1024 x 1024 pixel image matrix.  Serial 

tomograms were reconstructed from raw data using a cone beam filtered backprojection 

algorithm adapted from Feldkamp et al (134).  Noise was removed using a low pass 

Gaussian filter (sigma=1.2, support=2).  The tomograms were globally thresholded based 

on x-ray attenuation and used to render binarized 3-D images of the hind limb vascular 

network segmented (i.e. partitioned) from the surrounding tissues.  Histomorphometric 

analysis based on direct distance transform methods was subsequently applied to the 3-D 

images to quantify parameters of vascular network morphology and anisotropy (135,136). 

Micro-CT Parametric Analysis 

One representative control (left) hind limb was chosen at random to test the 

effects of resolution and threshold on the histomorphometric analysis of vessel volume, 

connectivity, number, thickness, separation, and degree of anisotropy.  This specimen 

was scanned at voxel sizes of 16, 20, 30, and 36 µm.  The 36 µm voxel scan was used to 

test the effects of threshold on histomorphometric parameters.  A threshold of 80 was 

initially chosen based on visual interpretation of thresholded two-dimensional 

tomograms.  The 36 µm voxel size scan was evaluated to determine the output of the 

histomorphometric analysis using thresholds of 60, 70, 80, 90, and 100.  These threshold 

values directly correlate to the linear coefficient of attenuation of the material in the 

image space.   
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Analysis of Blood Vessel Morphology in Ischemic Hind Limbs 

Surgery and control limbs were evaluated individually to quantify the 3-D 

histomorphometric values vessel volume, connectivity, number, thickness, thickness 

distribution, separation, and degree of anisotropy (Table 3.1).  These parameters are 

standard for the analysis of trabecular bone microstructure but have not been determined 

previously for microvascular networks (136).  In this study, these measures were taken in 

a volume of interest (VOI) defined as the upper hind limb, extending from the proximal 

femoral artery ligation point distally to the lower ligation point.   

 

Table 3.1.  Overview of Vessel Morphology Parameters 

Parameter Unit Definition
Volume mm3 -Image voxel size multiplied by the number of voxels in segmented image

Connectivity 1/mm3 -Maximal number of branches that can be broken within a blood vessel 
network before it is divided into two unconnected parts

Number 1/mm -Inverse of the mean spacing between the mid-axes of the blood vessels

Thickness mm -Average of the local vessel thicknesses determined at each voxel 
within the segmented vessel network

Separation mm -Average of the distance between neighboring vessels determined at each 
voxel within the image background space

Degree of Anisotropy 1 -Determined based on the directional orientation of the vascular network 
(1 = isotropic; >1 = preferential orientation exists) 

Parameter Unit Definition
Volume mm3 -Image voxel size multiplied by the number of voxels in segmented image

Connectivity 1/mm3 -Maximal number of branches that can be broken within a blood vessel 
network before it is divided into two unconnected parts

Number 1/mm -Inverse of the mean spacing between the mid-axes of the blood vessels

Thickness mm -Average of the local vessel thicknesses determined at each voxel 
within the segmented vessel network

Separation mm -Average of the distance between neighboring vessels determined at each 
voxel within the image background space

Degree of Anisotropy 1 -Determined based on the directional orientation of the vascular network 
(1 = isotropic; >1 = preferential orientation exists) 

 

Vessel volume was computed based on the voxel size and the number of 

segmented voxels in the 3-D image following application of the binarization threshold.  

Connectivity was determined using the method of Odgaard and Gunderson (137), which 

is based on the Euler characteristic and is free from assumptions on the three-dimensional 

structure of the segmented object.  Here, connectivity is defined as the maximal number 

of branches that can be broken within a structure before it is divided into two separate 

parts.  Vessel number, thickness, thickness distribution, and separation were calculated 
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using a model-independent method for assessing thickness in 3-D images (135).  This 

technique defines a local thickness at every point (voxel) in the VOI as the diameter of 

the largest sphere that both contains the point (not necessarily at its center) and is 

completely within the structure of interest (segmented object versus background space 

surrounding the object).  The average of the local voxel thicknesses within the structure 

yields the vessel thickness parameter, and a similar calculation on the background voxels 

determines the vessel separation.  To calculate vessel number, the segmented volume is 

skeletonized, leaving just the voxels at the mid axes of vessels in the structure.  Vessel 

number is defined as the inverse of the mean spacing between the mid-axes of the 

structures in the segmented volume.  Degree of anisotropy represents the degree to which 

the segmented vascular bed is oriented toward a specific direction.  It is measured by 

determining the mean intercept length of blood vessels as a function of direction.  

Eigenanalysis is used to find the principal material directions, and, after this is 

determined, the ratio of the maximum and minimum eigenvalues yields the degree of 

anisotropy as described by Gunderson et al (203).  A degree of anisotropy of 1.0 indicates 

that the network is perfectly isotropic, or does not contain a preferred orientation, and 

higher values of degree of anisotropy indicate that a structure contains a preferential 

material direction. 

  Using the semi-automated software that interfaces with the µCT 40 scanner, 

histograms were generated to display the distribution of the vessel sizes within the 

volume of interest.  Volume weighted histograms were created that display the local 

thickness value for every point within the structure.  In addition, a color-coded scale was 

mapped to the surface of the 3-D images to produce a visual representation of the vessel 
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size distribution.  These images contain a color-coded map that correlates to vessel 

diameter. 

Histological Analysis 

Mice were euthanized, cleared using heparinized 0.9% normal saline, and 

perfusion fixed using 10% neutral buffered formalin.  The adductor muscles were then 

excised from both the occluded and control limbs of each mouse.  These tissues were 

processed and paraffin embedded for histological analysis.  5 µm thick sections were cut 

and immunostained with a mouse monoclonal smooth muscle α-actin antibody (Sigma 

Chemical, St. Louis, MO).  In order to count arterioles using light microscopy, the 

primary antibody was detected using an avidin-biotin-alkaline phosphatase method from 

a commercially available kit (Vectastain ABC-AP, Vector Laboratories, Burlingame, 

CA).  Sections were counterstained with hematoxylin, and the number of positively 

stained vessels was counted from two transverse tissue sections taken 150 microns apart 

at approximately 5 mm from the proximal insertion of the adductor.  Arteriole densities 

were counted as the number of vessels per square millimeter and reported as ratio 

between the surgery and control limb for each specimen. 

To qualitatively assess the ability of micro-CT to resolve vascular structures using 

different image resolutions, approximately 1 mm thick transverse cross sections of tissue 

were cut from the upper hind limb of contrast perfused specimens.  These samples were 

then sequentially treated in 25%, 50%, 75%, 95%, and absolute ethanol for 24 hours 

each, followed by 24 hours in methyl salicylate (Sigma Chemical, St. Louis, MO) for 

tissue clearing.  The cleared tissues were first transilluminated and photographed using a 

high-resolution digital camera.  These same sections were then scanned using 8, 16, and 
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36 µm voxel sizes in order to qualitatively evaluate micro-CT in rendering the localized 

vascular structures. 

Statistical Analysis  

All data are presented as mean ± SEM.  Statistical analyses were performed using 

the Minitab software.  Tukey’s method was used for post hoc analyses, and ANOVA was 

used to model the effect of time post surgery on all response variables.  P<0.05 was 

interpreted as significant in all analyses.     

Results 

Evolution of Micro-CT Imaging and Hind Limb Ischemia Model Surgery 

Techniques 

In preliminary studies, perfusion of barium sulfate and gelatin suspensions was 

used to enhance x-ray attenuation of the vasculature.  Using this method, high resolution 

images of the hind limb vascular networks could only be generated at low thresholds that 

did not remove bone from the image.  In order to eliminate the confounding effects bone 

imaging would have on the morphological analyses, we attempted to use higher 

thresholds to segment the vasculature only.  However, this significantly diminished 

image quality (Figure 3.1).  Conversely, closer inspection showed that, due to the high 

radiodensity of barium sulfate, the segmented object often appeared artifactually large 

when lower threshold values were used.  Further investigation also demonstrated that the 

barium sulfate settled within the vessels after removing it from 4°C to place it within the 

micro-CT scanner, resulting in incomplete vascular filling and an inhomogeneous 

coefficient of attenuation within the vessels. 
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After gaining insight into some of the disadvantages of using barium sulfate in a 

gel suspension, we began to employ a silicone rubber contrast agent, which provides x-

ray attenuation due to its lead chromate content.  This compound polymerizes into a 

silicone rubber solid approximately 20 minutes after it is catalyzed by addition of a 

curing agent.  Compared to preliminary studies using barium sulfate, the polymerized 

compound lowered the risk of displacing the contrast when manipulating the tissues to 

prepare for imaging.  This compound also allowed us to maintain a more homogeneous 

mixture and hence x-ray attenuation within the vessels independent of the environment 

within the scanner during imaging.   

Although the contrast agent formulation was chosen to maximize contrast of the 

perfused vasculature, image segmentation of vascular structures from bone remained a 

challenge.  To circumvent this problem, specimens were placed in a decalcification 

solution for 48 hours.  Following this treatment, a lower threshold could be used to 

segment the vasculature from the surrounding tissues, and superior quality images were 

produced (Figure 3.1 C and D).  Improved imaging techniques also led to optimization of 

the surgery protocol.  Figure 3.1 C illustrates that in pilot studies, the upper ligation point 

was too distal to prevent perfusion of major arteries branching from the femoral artery 

that supply the lower limb.  Following this observation, shifting the ligation point 

proximally to preclude the branching of the deep femoral artery allowed us to create a 

more robust model of peripheral limb ischemia (Figure 3.1 D).       
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Figure 3.1.  Micro-CT angiograms demonstrating the progression of our hind limb 
ischemia model specimen preparation and surgical techniques. (A) and (B) show images 
from preliminary studies using a 15% barium, 2% gelatin suspension as a contrast agent 
for vascular imaging.  To remove the bone tissue from the image (B), use of a high 
threshold results in loss of small blood vessel definition that is evident at a lower 
threshold (A).  Images in (C) and (D) were acquired following vascular perfusion using a 
silicon polymer and bone decalcification, which allows use of a lower threshold.  These 
techniques circumvented previous problems associated with settling of barium particles 
within the suspension and thresholding out bone.  Image (C), a day 0 post surgery 
control, showed that our original surgical procedures ligated the femoral artery too 
distally to preclude blood flow in arteries that can supply blood to the lower leg.  Image 
(D), another day 0 post surgery control, demonstrates optimization of the surgical 
protocol by shifting the proximal ligation point.  The dashed boxes represent the volume 
of interest considered in the control and surgery limbs for all morphological analyses.     
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Effects of Voxel Size and Binarization Threshold on Quantification of Vascular 

Network Morphological Parameters  

Isotropic voxel size is a main determinant of the ability to resolve small objects on 

micro-CT scans and thus affects image quality.  While smaller voxel sizes result in longer 

scan times and much larger data sets, it can be seen in Figure 3.2 A that they also afford 

the opportunity to resolve smaller caliber vessels that can’t be visualized with larger 

voxel sizes.  When evaluating the VOI defined in Figure 3.1 D for a representative 

control limb, it was evident that voxel resolution affects the different morphological 

parameters to varied degrees (Figure 3.2 B).  Vascular volume decreased as voxel size 

increased due to the contribution of smaller vessels that could only be resolved when 

smaller voxel sizes were used.  Vessel connectivity, the most drastically affected 

parameter, decreased markedly on larger voxel size scans that did not resolve the well-

connected networks of small arterioles.  In agreement with this conclusion, there was a 

discernable decrease in vessel number and an evident increase in both average vessel 

thickness and vessel separation at larger voxel sizes.  Degree of anisotropy, one of the 

more mildly effected parameters, increased with larger voxel sizes, indicating that the 

smaller vessel networks resolved at smaller voxel sizes were more randomly oriented 

than the primary arteries.       

Selection of an image threshold defines the cutoff grayscale (attenuation) value 

that partitions the image voxels into either the background or part of the segmented 

object.  During reconstruction of image projections, a grayscale value that represents the 

capacity of the material within that space to attenuate x-rays is assigned to each voxel.  If 

this coefficient is higher than the assigned threshold, the voxel remains in the 3-D image 



www.manaraa.com

 52

as part of the segmented object.  Selection of an optimal threshold value is made 

especially challenging by attempting to account for partial volume effects.  At lower 

thresholds, smaller vessels that are apparent on the 2-D tomograms will remain as part of 

the segmented object, but larger vessels will appear artifactually large because the 

partially filled voxels surrounding them will remain in the image.  Conversely, to gain the 

most accurate image of the larger vessels, a higher threshold must be used, and smaller 

vessels are often omitted from the 3-D rendering (Figure 3.3 A).  Therefore, there is a 

tradeoff that exists, and when global thresholding is used, careful attention must be paid 

in choosing the best possible threshold. 

The ability to define an appropriate threshold for binarizing computed 

tomography data sets is an important issue to resolve before completing a morphological 

analysis of the rendered 3-D image.   Alteration of the threshold value had an observable 

effect on the morphometric parameters of the vascular tree, but this effect was not as 

substantial as that seen from varying voxel size (Figure 3.3 B).  Vascular volume, 

connectivity, and vessel number all decreased with increasing threshold with, as before in 

the resolution test, connectivity being the most strongly affected parameter.  Increasing 

the threshold also resulted in higher average thickness, separation, and degree of 

anisotropy of the vessel network.  As with increasing voxel size, these trends result from 

removing smaller, partial voxel vessels from the segmented volume. 
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Figure 3.2.  Voxel size sensitivity analysis.  (A) Representative control limb micro-CT 
angiograms illustrating the effects of scanning the same sample at different resolutions.  
Image voxel size is listed in the lower left of each image.  (B) Demonstration of the 
differences in the quantitative, morphometric parameters when 16, 20, 30, or 36 µm 
isotropic voxel sizes are used.  All parameters are affected by altering voxel size.  As 
voxel size is increased, vascular volume, connectivity, and vessel number decrease while 
average vessel thickness, average vessel separation, and degree of anisotropy increase.  
These trends result from the fact that the smallest vessels are not resolved at larger voxel 
sizes.   
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Figure 3.3. Threshold sensitivity analysis. (A) Representative control limb angiograms 
indicating the effects of using different binarization thresholds to produce rendered 3-D 
images from the same raw data set.  (B) Demonstration of the changes in the 
morphological parameters based on using 60, 70, 80, 90, and 100 as the binarization 
threshold to evaluate the 36 µm resolution scan.  All morphologic parameters are 
affected to some degree by varying the threshold, with connectivity showing the most 
drastic changes.  As threshold is increased, partial volume voxels are removed from the 
image.  This results in a decrease in vascular volume, connectivity, and vessel number 
with a concurrent increase in vessel thickness, separation, and degree of anisotropy.        
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Comparison of Control and Surgically Manipulated Hind Limb Blood Vessel 

Morphology 

In order to obtain a more quantitative assessment of the forming collateral 

network, we evaluated the potential utility of several morphological parameters.  As 

described in the methods section, vessel volume, connectivity, number, thickness, 

separation, and degree of anisotropy were determined for both the control and surgically 

manipulated limbs of all experimental animals (Figure 3.4).  In acute preparations (day 0 

post surgery), vascular volume was significantly reduced in experimental limbs compared 

to control limbs immediately following femoral artery excision.  However, as early as 3 

days post surgery, collateral vessels formed and the reconstituted vascular volume of the 

surgery legs was significantly higher than day 0 preparations.  In fact, at both 3 and 14 

days post surgery, the vascular volume was completely recovered and was not different 

from control limbs.  Connectivity of the vascular network in the surgery limbs was 

significantly less than in controls at day 0, but it increased rapidly post surgery.  While 

there was a trend toward increased connectivity at day 3, at 14 days, a more developed 

collateral system was formed, resulting in a connectivity value that was significantly 

higher than both 0-day surgery limbs and the contralateral control limbs.  As the 

collateral network grew and a series of small, densely packed vessels augmented blood 

flow to the hind limb, the 3 and 14-day post surgery hind limbs had significantly 

increased vessel number compared to day 0 surgery limbs or control limbs.  Average 

vessel thickness was decreased significantly following surgery and remained significantly 

lower at 3 and 14 days than in the intact control limbs, which contained the large, conduit 

femoral artery.  There was a non-significant trend toward increased vessel separation in 
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acutely prepared samples, but as the collateral network developed, at 3 and 14 days post 

surgery, vessel separation became significantly less than in control or day 0 specimens.  

Lastly, surgery limb degree of anisotropy was significantly reduced compared to controls 

at all time points, indicating that the new collateral network was more isotropic than the 

original intact vessel network.  These data indicate that vascular volume, vessel network 

connectivity, vessel number, and vessel separation may be particularly useful parameters 

for quantifying adaptive vascular changes following surgery in the hind limb ischemia 

model. 

As an additional method of analysis, histograms were compiled to show the blood 

vessel size frequency distribution in the control and experimental limbs 0, 3, and 14 days 

post surgery (Figure 3.5).  Control limbs represent the normal anatomical distribution of 

blood vessel sizes in non-manipulated limbs.  Immediately post surgery (day 0), the 

ischemic limb had reduced perfusion to all vessel sizes.  Relative to control limbs, 3-day 

and 14-day post surgery legs showed an increase in small, collateral-sized vessels and a 

decrease in the larger, conduit vessel diameters (14-day data not shown).  In addition, a 

visual representation of the blood vessel size distribution was produced by mapping a 

color-coded scale to the object surface (Figure 3.6).            
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Figure 3.4.  Demonstration of serial changes in quantitative assessment of vascular 
morphology after femoral artery ligation.  Histomorphometric analysis of (A) vascular 
volume (B) connectivity (C) vessel number (D) vessel thickness (E) vessel separation 
and (F) vascular tree degree of anisotropy.  Results (mean ± SEM) are given for control 
limbs (n=18) and surgery limbs 0 (n=7), 3 (n=6), and 14 days (n=5) post surgery (PS).  
∗ = significant difference (P<0.04) compared with control limb at a given time point.  ‡ 
= significant difference (P<0.01) between the indicated time point and 0-day post 
surgery specimens.  † (P<0.02) denotes that the histomorphometric parameter changes 
significantly in surgically manipulated hind limbs as a function of time post surgery as 
determined by ANOVA.    
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Figure 3.5.  Vessel diameter histogram.  This histogram shows mean blood vessel size 
distribution in control limbs (n=13) and experimental limbs 0 (n=7) or 3 days (n=6) 
post surgery.  Control limbs represent the normal anatomical distribution of blood 
vessel sizes in non-manipulated limbs.  0 days post surgery, the ischemic limb has 
reduced perfusion to all vessel sizes.  Relative to control limbs, 3-day post surgery legs 
showed an increase in small, collateral-sized vessels and a decrease in the larger, 
conduit vessel diameters.  Since the trends were the same as those seen at 3 days, 14-
day post surgery data were omitted for clarity. 
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Figure 3.6.  Representative 14-day post surgery micro-CT images with a color-coded 
vessel diameter scale mapped to the 3-D image surface.  (A) Rendering of an entire 
hind limb. (B) shows the volume of interest analyzed in the surgically modified and 
control limbs.  In these images, the color scale correlates to vessel size.  Red is mapped 
to the surface of vessels with diameter greater than or equal to 396 µm, and the color 
scale is linear down to zero.  Length scale bars are shown in the lower right of each 
image. 
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Comparison of Micro-CT and Histological Analysis       

In order to confirm our micro-CT data using a previously used technique, we 

performed arteriole density analyses after smooth muscle α-actin staining.  Since it is 

difficult to directly validate the micro-CT calculations, we compared the ratio of the 

surgery and control limb vessel number as determined by micro-CT with a similar ratio 

for the histologically determined arteriole density values.  There was excellent agreement 

between these two methods at 14 days post surgery, at which point the ratio of vessel 

number in the surgical and control limbs was determined to be 1.26±0.07 using micro-CT 

and 1.28±0.28 using histology (Figure 3.7 A). 

 To further evaluate the accuracy of micro-CT in depicting localized vascular 

structures, a small, 1 mm section of tissue from a contrast filled hind limb was cleared 

and photographed yielding a vivid and precise representation of the vasculature.  A 

qualitative comparison of this photograph and 8, 16, and 36 µm voxel size micro-CT 

images of the same specimen illustrates that micro-CT has the capability to accurately 

depict the smallest vessels when high resolution scans are used, but only larger arterioles 

and arteries can be effectively imaged using a 36 µm voxel size (Figure 3.7 B). 
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Figure 3.7.  Histological Validation.  (A) Example photomicrographs of muscle cross 
sections from 14-day post surgery control and experimental limb adductors identifying 
arterioles using a smooth muscle α-actin antibody and counterstained with hematoxylin.  
Quantification shows excellent agreement between the histological and micro-CT 
determinations of the surgery to control limb vessel number ratio.  (B) Qualitative 
assessment of micro-CT vascular imaging using different voxel sizes.  A representative 1 
mm thick transverse tissue section was taken from a contrast-filled hind limb in the region 
shown.  This tissue specimen was cleared using methyl salicylate and imaged with high 
resolution digital photography and micro-CT at voxel sizes of 8, 16, and 36 µm.  These 
images illustrate that, as micro-CT voxel size is increased, small vessels are no longer 
clearly depicted while large arterioles and arteries are still accurately resolved. 
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Discussion 

Small animal models have been utilized to study the mechanisms of angiogenesis 

and collateral vessel growth (99,100,107,204).  Insights gained from these models have 

played a role in the design of therapeutic strategies for clinical trials aimed at recovering 

vascular function in patients with peripheral artery disease (34,205-212).  Despite 

advances in analysis of these models, no current method offers an optimal analysis of 

blood vessel microarchitecture and function.  The current study demonstrates that micro-

CT imaging combined with the use of perfused contrast agents and bone decalcification 

provides a robust methodology for evaluation of vascular networks.  Specifically, micro-

CT is advantageous because it provides high resolution, quantitative, 3-D, and objective 

data analysis.  This was evident in our validation study using immunohistochemistry, 

which found micro-CT to offer a highly accurate, less variable, and less time consuming 

alternative for quantitative measure of collateral development.  Micro-CT techniques also 

offer flexibility to the user in defining the volume of interest be evaluated.  A global 

analysis of the entire surgery and contralateral control hind limb vascular anatomy can be 

evaluated for comparative purposes, or if desired, the collateral vessels that form in the 

thigh can be digitally isolated for morphological evaluation as was done in this study.  

Alternatively, the functional reconstitution of the vascular network can be assayed by 

defining the VOI as the distal portion of the hind limb in order to quantify perfusion to 

the large conduit vessels in the lower portion of the leg.  Thus, contrast-enhanced micro-

CT imaging provides broad applicability to model systems that require a vigorous and 

highly quantitative evaluation of vascular structure or growth. 
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We examined vascular anatomy in the thigh of surgically manipulated and control 

hind limbs of wild type mice 0, 3, and 14 days following femoral artery ligation and 

excision.  The blood vessel networks were evaluated within this VOI for vessel volume, 

connectivity, number, thickness, thickness distribution, separation, and degree of 

anisotropy.  These lumped assessments of the vascular morphology led to the conclusion 

that removal of the large, conduit femoral artery stimulates reconstitution of vascular 

volume through a highly connected network of closely spaced, small vessels.  

Alternatively, histograms displaying a parameter’s distribution within the specimen can 

be advantageous for alternative indices such as average vessel thickness.  When the 

distribution of vessel diameters is evaluated, more information can be gathered and 

otherwise undetectable trends may become apparent.  For example, at 0, 3, and 14 days 

post surgery, no significant difference in average vessel thickness was apparent, but clear 

differences were seen when the thickness distribution was calculated (Figure 3.5). 

The rapid arteriogenic response detected represents a particularly interesting 

observation.  Previous researchers have suggested that arteriogenesis is temporally 

dissociated from angiogenesis, and it has also been suggested that arterialization of 

preexisting vessels, rather than sprouting of new capillaries, is a more efficient means of 

establishing collateral flow following femoral artery ligation (5,7,213,214).  Our data 

demonstrate that vascular volume of angiographically visible vessels was completely 

reconstituted compared to control as early as 3 days following surgery.  Furthermore, 

there was no significant difference between 3 and 14-day post surgery specimens for any 

of the morphological parameters evaluated.  Multiple researchers have reported different 

capacities for angiogenesis and collateral development in different background strains of 



www.manaraa.com

 64

mice (5,215,216).  The rapid response to occlusion observed here corroborates the work 

by Scholz et al indicating that, unlike other strains, resting hind limb perfusion in the 

inbred C57BL/6 mouse strain is significantly recovered as early as 3 days post surgery 

(5).  Here, the authors found that the process of collateralization is so fast and efficient in 

these mice that ischemia is minimized and angiogenesis, therefore, does not occur.  

The tradeoffs that exist when defining the binarization threshold and the scanning 

resolution are important methodological cautions that must be considered when using 

micro-CT imaging for analysis of vascular structures.  When defining the binarization 

threshold, a value that is too high will delete small vessels from the image, but a 

threshold that is too low can make major vessels appear artifactually large.  It is our 

recommendation that the user makes a visual determination of the optimal threshold by 

assessing several specimens and then keeps this value constant for all evaluations within 

a study.  This value should be chosen based on the threshold that allows the capture of the 

intricate details with minimal overestimation of broader structures.   

We believe that choosing the voxel size of the scan should be chosen based on the 

proposed application.  Scanning with smaller voxel sizes provides more information by 

resolving smaller vessels that cannot be detected at larger voxel sizes.  However, based 

on the type of information sought and sample throughput considerations, scanning at a 

larger voxel resolutions can be more effective for some applications.  For example, when 

using the mouse hind limb ischemia model, we were interested in gaining a global 

perspective of collateral growth in the upper thigh as is commonly done in 2-D by 

investigators who utilize x-ray microangiography.  We believe that a voxel size of 36 µm 

is the best choice for this application because it allows us to preferentially focus our 
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analysis on the larger, arteriole-sized vessels, which are the best indicators of ischemic 

limb recovery.  However, as shown here through voxel size sensitivity analysis and 

assessment of different micro-CT voxel sizes for resolving local vascular anatomy in 

cleared tissue sections, higher resolution scans are necessary to image smaller vascular 

structures.   For example, a voxel size of 8 µm or smaller may be required for studies 

whose aim is to measure angiogenesis or small blood vessel structure within a confined 

area (i.e. tumor growth or fracture healing models).   When using smaller voxel sizes, the 

major disadvantage is the increased scan time, along with the increased computational 

time and complexity required for analyses of a much larger data set.   

Another possible drawback of the techniques used in this study is that they do not 

allow for longitudinal analyses at different time points within the same animal.  Since this 

is a post-mortem analysis, the number of animals required for completion of a time 

course study is increased compared to methods such as laser Doppler perfusion imaging, 

which offers the ability to acquire multiple scans on the same living animal at different 

time points post surgery.  The recent commercial availability of high speed in vivo micro-

CT scanners that provide maintenance of animal anesthesia within the scanning system 

may remedy this limitation.  However, before using these systems, one must consider the 

possible adverse biological effects that may result from repeated exposure of the animals 

to anesthetics and relatively high doses of x-ray radiation that would occur in a sequential 

study.  In addition, the increased image quality afforded by decalcifying specimens will 

not be feasible in the in vivo systems.  Other potential challenges presented by this 

technology are development of non-toxic contrast agents that persist in the bloodstream 
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long enough for image acquisition and gating methods to account for heartbeat and 

respiratory movements during the scan.  

Previous studies that involved micro-CT imaging of the vasculature 

predominantly have used either barium sulfate based contrast agents (129,217,218) or 

polymerizing compounds containing lead chromate (121-127).  As shown in our 

preliminary studies, choice of the ideal contrast agent can be a strong determinant of 

image quality for some applications.  We found the polymerizing agent to be far superior 

for the hind limb ischemia model, but it is our recommendation that both contrast agents 

can potentially be useful depending upon the application.  In this study, the silicon 

polymer was shown to be ideal for imaging collateral development compared to barium 

sulfate because it allowed us to circumvent problems such as settling and lack of 

homogeneity within the vasculature, clumping during injection, and difficulty with 

perfusion due to high viscosity.  However, the presence of bone, a similarly attenuating 

material, required decalcification when global thresholding was used to segment the 

vasculature from surrounding tissues.  The ability to mix barium sulfate to higher 

concentrations allows the possibility to achieve a stronger attenuating contrast agent and, 

therefore, allows use of a higher binarization threshold.  As a result, barium sulfate can 

provide sufficient image thresholding of large arterial vessels even without bone 

decalcification, but high viscosity may limit the ability to perfuse small arterioles and the 

venous circulation.   

Micro-CT has several superior features compared to other techniques for blood 

vessel morphological evaluation, but ultimately, the ideal strategy for microvascular 

analysis may include multiple methods that allow for both anatomical and functional 



www.manaraa.com

 67

measures.  The micro-CT vascular imaging methodology has the flexibility and potential 

to be adapted to other applications where vascular structures must be analyzed in a 

rigorous and quantitative fashion (e.g., fracture healing, tumor angiogenesis, coronary 

collateral growth, etc.).  The most significant limitation of micro-CT is that it is a strictly 

anatomical assessment.  While inferences regarding physiologic function can be deduced 

from micro-CT images, its strength is in the quantitative anatomical information it 

provides.  Therefore, combining micro-CT with a more powerful method for functional 

analysis such as laser Doppler perfusion imaging, MRA, or micro-PET may provide the 

most comprehensive evaluation of vascular network structure and function.  



www.manaraa.com

 68

CHAPTER 4 

THE ROLE OF OSTEOPONTIN 

 IN POSTNATAL VASCULAR GROWTH 

Introduction 

Peripheral arterial occlusive disease (PAD) causes obstruction of flow in arteries, 

typically in the lower limbs, and is caused primarily by atherosclerosis.  These 

obstructions can cause intermittent or chronic ischemia and pain in the extremities, which 

can lead to amputation in the most severe cases.  PAD affects 17% of men and 21% of 

women who are 55 years or older, but prevalence is much higher in smokers and those 

with diabetes mellitus, with advanced disease progression being much more common in 

patients with these risk factors (219).  Therapeutic angiogenesis, stimulation of new 

blood vessel formation to increase blood flow to ischemic tissues, presents a relatively 

new clinical approach for alleviating the deleterious effects of PAD.    

 Although this strategy is termed “therapeutic angiogenesis”, the goal is to increase 

perfusion to ischemic tissues by any means possible, including arteriogenesis and 

vasculogenesis.  The majority of studies geared toward development of therapeutic 

angiogenesis treatments have focused on the clinical potential of growth factor delivery 

(i.e. VEGF or FGF) or stem cell therapy (i.e. EPCs).  Preclinical data using either VEGF 

or FGF have shown tremendous promise in a variety of animal models (26-30).  

Unfortunately, the initial human trials have not corroborated these results and have 

shown almost no improvement in clinical outcome (31-34).  Cell therapy has also shown 

accelerated recovery from ischemia in animal work (59-62).  By most accounts, clinical 

trials using cell therapy have been more favorable than those using growth factors, yet the 
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levels of clinical improvement have been modest (81,82).  While therapeutic 

angiogenesis trials have shown enough clinical potential to warrant further investigation, 

improved efficacy will be necessary before any of these techniques can gain broad 

clinical use.  To do so, it will be imperative that scientists are able to better define the 

roles of all factors involved in postnatal vascular growth, and clinicians must carefully 

consider the roles of other mediators, such as ECM proteins, in addition to the potential 

synergistic effects of using combined growth factor and cell therapies.   

 Previous studies have pinpointed several factors that, when studied in isolation, 

appear to play a significant role in the process of postnatal vascular growth.  However, 

restoration of ischemic limb perfusion requires a precise interplay between numerous cell 

types, growth factors, and cues provided by the extracellular environment.  In order to 

better develop therapeutic angiogenesis regimens, each of these areas must be better 

understood in isolation and more importantly, in the context of their interactions with 

each other.  The ECM, which is probably the most neglected of these three areas, 

provides the structural scaffolding that maintains the organization of vascular cells into 

blood vessels and initiates signals that stimulate events such as cellular survival, 

proliferation, and migration.  In order to better understand this aspect of collateral vessel 

formation, we have focused on the role of the ECM protein osteopontin during ischemic 

limb revascularization. 

OPN is synthesized as a 34-kDa protein and functions in a variety of biological 

processes including, but not limited to, inflammatory response, immunity, wound repair, 

tumor formation and metastasis, cell adhesion, cell migration, and bone mineralization 

and remodeling.  OPN has been classified by some as a “matricellular protein”, a 
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categorization for nonfibrillar, bioactive ECM proteins that are thought to mediate 

cellular functions by providing a functional link between cell surface receptors, structural 

ECM molecules, and cytokines, growth factors, and proteases (156).  OPN interacts with 

as many as seven different integrins through its RGD or more novel SVVYGLR binding 

sequences (155,157-161).  Many of these integrin interactions are regulated by thrombin 

cleavage, which is thought to increase accessibility of cell receptors to their binding 

domains and greatly enhance the cellular effects of OPN (162).  Also, an intracellular 

form of OPN that localizes to the cell membrane where it binds to the cell surface 

glycoprotein CD44 has been found to be an integral component in cell migration 

(165,167).   

Although OPN was originally isolated from bone, it has also been found to be 

important for normal arterial physiology (173).  Albeit in the context of atherogenesis, 

OPN has been found to be produced by the three primary cell types traditionally thought 

to participate in blood vessel growth: monocytes/macrophages, endothelial cells, and 

smooth muscle cells (174).  Previous in vitro studies have demonstrated that vascular cell 

interactions with OPN mediated through cell surface integrins regulate a variety of 

cellular functions that are potentially important to angiogenesis and arteriogenesis.  In 

this context, OPN signaling through the αvβ3 integrin has been found to mediate 

endothelial cell survival in a process that involves the NF-κB signaling pathway (175).  

Also, the angiogenic growth factor VEGF has been shown to trigger an increase in αvβ3 

expression, OPN expression, and thrombin cleavage of OPN, which provides a 

cooperative mechanism that enhances endothelial cell migration (176).  In addition, OPN 

expression is induced by stimulation with FGF, and this cross-talk may provide a 
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mechanism for recruitment of monocytes and amplification of FGF-induced angiogenesis 

(177).  OPN also mediates several processes relevant to arteriogenic collateral vessel 

formation including adhesion and migration of both macrophages and smooth muscle 

cells. (178-180).  There have been a small number of in vivo studies that have implicated 

OPN in postnatal neovascularization.  For example, OPN mRNA has been shown to be 

locally upregulated at sites of ischemia-induced retinal neovascularization in mice (3), 

and OPN has been found to correlate with progression of the angiogenesis-related 

processes tumorigenesis and metastasis (169).    

Based on the observations discussed above, it is likely that the vascular effects of 

OPN are also relevant in recovery from limb ischemia.  However, the specific function of 

OPN during ischemic limb revascularization has not been previously determined.  In the 

present study, we hypothesized that OPN deficiency reduces postnatal vascular growth 

and delays reperfusion of ischemic tissues and recovery of limb functionality.  To test 

this hypothesis, we have investigated in vivo hind limb ischemia and in vitro cellular 

function assays in wild type and OPN-/- mice.  For the in vivo model, endpoints included 

anatomical quantification of the collateral vasculature, measurement of physiological 

blood perfusion, and functional assessment of exercise endurance.  For in vitro studies, 

endpoints included endothelial cell sprouting and tube formation, in addition to 

evaluation of macrophage migration. 

Methods 

Mice 

Male wild type C57BL/6 mice were purchased from the Jackson Laboratory.  

Osteopontin deficient mice were originally received from Dr. Lucy Liaw of the Maine 
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Medical Center, and they were subsequently backcrossed ten generations onto the 

C57BL/6 background.  All animals were fed a standard chow and had free access to 

water.  All protocols were approved by the Institutional Animal Care and Use Committee 

and done in accordance with the federal guidelines on the principles for the care and use 

of animals in research.    

Hind Limb Ischemia Model 

Animals were anesthetized by intraperitoneal injection of xylazine (10 mg/kg) and 

ketamine (80 mg/kg).  All hair was removed from the surgical site, and the area was 

cleansed with sterile water followed by betadine.  A unilateral incision was then made 

over the right medial thigh of the mouse.  The superficial femoral artery and vein were 

ligated proximal to the caudally branching deep femoral artery, and a second ligation was 

performed just proximal to the branching of the tibial arteries.  The femoral nerve was 

left intact and dissected away from the vasculature between the proximal and distal 

ligation.  The length of the artery and vein was separated from surrounding tissues and 

excised between the two ligation points.   The skin was then closed with interrupted silk 

sutures.  The mice were allowed to recover on a heated pad, and, after awakening, they 

were returned to their cages and allowed to ambulate freely.   

Micro-CT Imaging of Collateral Vessels 

Novel quantitative micro-CT based methods developed in our laboratory were 

utilized for evaluation of ischemic limb collateralization (130).  Mice were sacrificed 

using carbon dioxide inhalation at 7 days post surgery (wild type n=7, OPN-/- n=7).  The 

vasculature of the mice was sequentially perfused at physiologic pressure using 

heparinized (100 units/mL) normal saline, 10% neutral buffered formalin, and then again 
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with heparinized saline.  The vascular system was subsequently injected with a 

radiopaque, lead chromate based contrast agent (Flow Tech Inc.), which was then 

allowed to polymerize for 24 hours at 4°C.  The mouse hind limbs were then dissected 

free from the remainder of the animal and placed in 10% neutral buffered formalin for 48 

hours.  Afterwards, the specimens were soaked for 48 hours in a formic acid based 

solution (Cal-Ex II, Fisher Scientific) for decalcification of the mineralized bone, washed 

thoroughly using water, and placed in 10% neutral buffered formalin until imaging.  The 

vasculature located between the proximal ligation point and the ankle was imaged at a 

30-µm voxel size, and the tomograms were globally thresholded based on x-ray 

attenuation and used to render binarized 3-D images of the hind limb vascular network 

segmented from the surrounding tissues.  These 3-D images were evaluated for vascular 

volume. 

Laser Doppler Perfusion Imaging 

Laser Doppler Perfusion Imaging was completed 3, 7, and 14 days post surgery to 

assess perfusion to the paw of the ischemic limb (n=11-14 for each genotype at each time 

point).  Mice were anesthetized with xylazine (10 mg/kg) and ketamine (80 mg/kg) and 

scanned with laser Doppler perfusion (PIM II Laser Doppler Perfusion Imager).  To do 

so, anesthetized animals were placed in the supine position on a heating pad under the 

laser scanner.  The lower limbs were imaged, and the footpad was chosen as the region of 

interest for calculation of perfusion values.  To account for possible differences in 

ambient temperature and lighting, the ratio was calculated for the average perfusion in the 

foot of the ischemic leg to the foot of the control leg. 
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Swim Endurance Test 

As a physiologic test of ischemic limb functional recovery, experiments 

measuring swim time until exhaustion were completed.  To do so, we built a current pool 

that stimulates forced swimming in mice (220).  This apparatus possesses a roller pump 

that can generate a surface current, forcing the mice to swim upstream as shown in the 

schematic in Figure 4.1.  The water temperature was maintained at 35°C with a 

submersible heater (Cole Parmer), and, using the pump, flow rates of 5 L/min were 

generated.  Prior to onset of hind limb ischemia, mice were trained for 5 minutes per day 

for 7 days in order to acclimate the animals to swimming.  At 5 days post-surgery, 

maximal exercise capacity was defined as the amount of time the animal could swim 

against the current before experiencing 5 consecutive seconds of submersion, at which 

point the mouse was removed from the tank (wild type n=8, OPN-/- n=8).  

  

 

Figure 4.1.  Schematic of flow tank for testing exercise endurance.  In this system, a 
current is generated on the surface of the water in the tank.  This surface current flows 
through a vent into the collection reservoir and recirculates to the flow reservoir.   
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Mouse Serum Isolation 

Mice were euthanized with carbon dioxide inhalation.  Blood was immediately 

taken from the right ventricle using a 21-gauge needle.  Blood samples were left to 

coagulate for 45 minutes at room temperature.  They were then centrifuged, and the 

serum supernatants were pipetted from the samples, sterilized using a syringe filter, and 

frozen at –80°C until use.   

Aortic Ring Vascular Sprouting Assay 

The mouse aortic ring assay was utilized as previously described (96).  1.5% 

agarose wells were created with an inner diameter of 10 mm and an outer diameter of 17 

mm.  Three of these wells were placed into each 60 mm bacterial culture dish.  The aorta 

was dissected from the mouse and placed into cold serum free DMEM containing 

penicillin and streptomycin.  The adventitial layer was carefully dissected away, and 1 

mm sections were cut from the mid-thoracic region of the aorta.  These rings were rinsed 

2-3 times in cold DMEM and then embedded in collagen gels.  In order to stain 

endothelial cells prior to embedding, aortic rings were incubated with fluorescently 

labeled low-density lipoprotein (Biomedical Technologies) for a small subset of samples.  

These explants were imaged with fluorescent microscopy to confirm that cells 

participating in tube formation were endothelial in nature.      

 To embed the explants, 200 µl of 1.5 mg/ml rat tail type I collagen (Serva 

Chemical) was initially pipetted into the bottom of each agarose well and placed into the 

incubator for 15 minutes to polymerize.  Then, an aortic segment was placed on top of 

each of these collagen layers and covered with another 200 µl of type I collagen.  After 

allowing the second collagen layer to gel for 15 minutes in the incubator, 6 mLs of 
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MCDB-131 containing 25 mM NaHCO3, 2.5% autologous mouse serum, 1% glutamine, 

and penicillin/streptomycin was added to the dish.  Explants were imaged 

microscopically at 4, 6, 8, and 10 days, and the number of vascular sprouts and length of 

the largest sprout from each aorta were measured.        

Monocyte/Macrophage Migration Assay 

Cell culture transwell chemotaxis inserts (Falcon) with a pore size of 8 µm were 

coated overnight at 4°C with 10 µg/ml fibronectin (Sigma) and then allowed to air dry.  

Resident monocytes and macrophages were isolated from wild type and OPN deficient 

mice by peritoneal lavage with cold PBS.  Harvested cells were centrifuged, resuspended 

in 0.2% BSA, and counted using a Coulter counter.  720 µl of DMEM was placed in the 

lower well, and cells were seeded onto the tops of the inserts (400,000 cells per transwell) 

in 200 µl of DMEM.  Dishes were placed into the incubator, and the cells were allowed 

to adhere for 1 hour.  At this time, 80 µl of blank media or media containing 

chemoattractants were added to the lower reservoirs of the appropriate wells to reach a 

total volume of 800 µl with a final concentration of 5% homologous serum, 100 ng/ml 

MCP-1 (R&D systems), or negative controls with no stimulus (no stim).  After 

incubation for 8 hours, non-migrated were removed from the top of the membrane using 

cotton swabs.  Then, the remaining migrated cells were stained with Diff-Quick and 

imaged using brightfield microscopy.  Cell numbers were quantified from three random 

fields for each insert using the Image Pro software.        
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Results 

Micro-CT Imaging of Collateral Vessels 

 Micro-CT Imaging was completed at 7 days post surgery as a quantitative, 

anatomical measure of collateral vessel formation.  Qualitative observation of the 3-D 

image reconstructions of the vasculature of the ischemic limbs showed decreased 

collateral blood vessel formation in upper thigh region of the OPN deficient mice relative 

to the wild types as shown in Figure 4.2 A.  Quantitative analysis of these specimens 

determined that the OPN knockouts possessed significantly reduced vascular volume of 

the ischemic limb (Figure 4.2 B).  We also completed a size discriminated measurement 

on what we deemed to be newly formed collaterals, which were defined as vessels with 

diameter less than or equal to 180 microns.  When we completed this focused analysis, 

we found that the OPN deficient animals possessed significantly decreased vascular 

volume relative to the wild types, indicating that the difference in total vascular volume 

was primarily driven by a lack of smaller, newly formed collateral-sized vessels  (Figure 

4.2 C).       
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Figure 4.2.  Micro-CT image analysis.  (A) Micro-CT images showing decreased collateral 
vessel formation in OPN deficient mice.  (B) Quantitative analysis shows significantly 
decreased vascular volume in OPN deficient mice.  (C) Relative volume of vessels less than 
or equal to 180 microns in diameter illustrates the defect in formation of small, collateral 
vessels in OPN deficient mice.  Data presented as mean+SEM.  n=7 for all analyses.  
* indicates p<0.05 using student’s t-test. 
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Laser Doppler Perfusion Imaging 

 LDPI was performed to test for recovery of distal perfusion to the ischemic limb 

3, 7, and 14 days post surgery.  The acquired images illustrated a gradual recovery of 

perfusion to the paw for both genotypes, with a visible lag in recovery seen in the OPN 

deficient mice (Figure 4.3 A).  After calculation of average perfusion in the ischemic paw 

relative to the contralateral paw, we found both genotypes to have only approximately 

25% perfusion by 3 days.  However, by 7 days post surgery, the wild types resting 

perfusion values were at about 70% of normal, while the OPN mice were significantly 

lower at around 40%.  At 14 days, this significant deficiency in perfusion recovery was 

even more pronounced, with wild types having nearly normal perfusion (88%) while the 

OPN knockouts possessed a persistent blood flow defect (45%).  See Figure 4.3 B. 

Swim Endurance Test 

As a functional measure of ischemic limb recovery, exercise capacity was 

measured 5 days post surgery.  At this time point, these mice, which had undergone one 

week of training prior to surgery, were forced to swim against a generated current until 

failure.  Using this metric, it was determined that the OPN deficient mice had 

significantly hindered function of the ischemic limb, as shown by a 40% decrease in 

maximal swim time relative to the wild types (Figure 4.4). 
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Figure 4.3. LDPI analysis.  (A) Representative LDPI images display the time course of 
recovery of ischemic limb perfusion in OPN deficient and wild type mice.  Color-coded 
perfusion scale shown on right.  (B) Quantitative analysis (average perfusion in ischemic 
paw / average perfusion in normal paw) displayed a significant lag in recovery in OPN 
deficient mice.  Data presented as mean+SEM.  n=11-14 for each group.  * indicates 
significant differences (p<0.001) determined using Tukey’s method for pairwise 
comparisons between genotypes at the indicated time points.  
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Figure 4.4.  Swim endurance test.  Relative to wild types, OPN deficient mice displayed 
significantly decreased swim endurance 5 days following onset of ischemia.  Data 
presented as mean+SEM.  For each group, n=8.  * indicates p<0.01 using student’s t-test. 
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Aortic Ring Vascular Sprouting Assay 

 The aortic ring assay was utilized to measure endothelial cell angiogenic capacity 

through their ability to sprout/migrate into a collagen gel and form vascular tubes.  Wild 

type and OPN deficient aortic rings were harvested, embedded ex vivo in collagen gels, 

and assayed for neovascular sprouting every two days from 4-10 days.  These rings 

displayed substantial sprouting, which peaked at around 1 week and could be imaged 

using light microscopy.  There was a modest, but insignificant overall decrease in sprout 

number in OPN deficient specimens relative to wild types, and there was no difference 

between genotypes for maximum sprout length (Figure 4.5).   

Monocyte/Macrophage Migration Assay 

 Since movement of monocytes and macrophages to sites of angiogenesis and 

collateralization is suspected to be a pivotal early event in these processes, we evaluated 

migration of these cells in response to chemoattraction.  To do so, peritoneal 

monocytes/macrophages were harvested from wild type and OPN-/- mice and assayed for 

chemotaxis toward homologous serum and MCP-1.  Homologous serum produced a 

strong induction in monocyte/macrophage migration for both genotypes.  OPN-/- serum 

stimulated a significant increase (2.4-fold) in migration of OPN-/- cells.  Wild type cells 

displayed significant migration toward homologous serum (6.8-fold increase), which was 

also significantly greater than the chemotactic response of the OPN-/- cells to serum 

(Figure 4.6 A).  In OPN-/- cells, MCP-1 did not invoke significant migration above 

negative controls.  Wild type cells exposed to MCP-1, on the other hand, migrated 

significantly more than cells that were not exposed to chemoattraction or OPN deficient 

cells that were stimulated with MCP-1 (Figure 4.6 B).   
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Figure 4.5.  Aortic ring sprouting assay. (A) Representative aortic ring specimens 
displayed that the OPN deficient specimens possessed a modest decrease in angiogenic 
sprouting at 8 days. (B) OPN deficient mice displayed a trend towards reduction in 
number of vascular sprouts and (C) no difference in maximum sprout length over a 10 
day time course.  Genotype was not found to be a significant predictor of sprout number 
or maximum sprout length using ANOVA, and, using Tukey’s method, it was determined 
that no significant differences existed in pairwise comparisons between genotypes for 
either measure at any time point.  Data (n=9) presented as mean+SEM.   
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Figure 4.6.  Macrophage chemotaxis assay. OPN deficient mice displayed a significant 
quantitative reduction in number of monocytes/macrophages that migrated across the 
membrane in response to chemoattraction from (A) homologous serum or (B) MCP-1.  
Data presented as mean+SEM.  For each data point shown, n=12 (4 wells, 3 fields per 
well).  Post-hoc comparisons done using Tukey’s method.  † indicates significance 
(p<0.01) versus WT no stim and OPN no stim.  # indicates significance (p<0.0001) 
versus OPN serum.  * indicates significantly different (p<0.001) from WT no stim, OPN 
no stim, and OPN MCP-1.   
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Discussion 

Previous in vitro studies have discovered roles for OPN in controlling survival, 

migration, and other functions in multiple cell types involved in postnatal vascular 

growth.  In this study, we sought to determine the in vivo significance of OPN in 

angiogenesis/arteriogenesis processes.  To do so, we compared wild type and OPN-/- mice 

for their capacity to form collateral vessels and functionally recover following acute 

induction of hind limb ischemia.  Following ligation and excision of the femoral artery, 

OPN deficiency was found to significantly delay collateral vessel formation, restoration 

of distal limb perfusion, and recovery of the functional capacity of the ischemic limb.  

These in vivo observations were found to correlate to normal ex vivo endothelial 

sprouting.  In contrast, these results corresponded to a substantial decrease in migration 

of in vitro OPN-/- monocytes/macrophages in response to chemoattraction.  These data 

suggest that OPN is a critical regulator of collateral vessel formation and that this effect 

is driven by its role in mediating monocyte/macrophage migration and functionality.   

The initial endpoint of our study was based on quantitative 3-D micro-CT 

imaging methodologies that were established in our lab (130).  Using this technique, we 

are able to perform high resolution, objective, and quantitative measurements of the 

global vascular anatomy within the mouse hind limb to a degree not afforded by 

immunohistochemistry, X-ray angiography, or other commonly utilized methods.  

Importantly, using this modality, we were able to detect significantly decreased total 

vascular volume, which was driven by a decrease in smaller, collateral-sized vessels in 

OPN deficient mice.  Next, we utilized the LDPI imaging methodology as a measure of 

blood flow to evaluate the physiological significance of this finding.  LDPI is a 
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commonly used endpoint in mouse hind limb ischemia studies, and it has been found to 

correlate with histological vessel counting (107).  Using LDPI, we performed 

measurements on anesthetized mice and found decreased recovery of perfusion to the 

ischemic paw in the OPN-/- mice at both 1 and 2 weeks post surgery.  In addition, we 

measured the exercise capacity of the mice as a means for functional assessment of 

ischemic limb recovery.  We felt that it was especially important to run this full 

complement of studies to correlate vascular anatomy and blood flow to limb 

functionality, considering previous reports have indicated that measuring resting blood 

flow does not always accurately reflect the true flow deficit in animal models of hind 

limb ischemia (116).  In order to measure limb functionality, we built a swimming 

apparatus that forced the mice to swim against a generated current (220).  This technique, 

unlike treadmill tests, requires that the mice equally utilize both of the hind limbs and 

provides a useful methodology for measurement of exercise endurance and, therefore, 

functional recovery of the ischemic leg.  Using this apparatus, we were able to measure a 

significant functional impairment of the ischemic limb in the OPN-/- mice relative to the 

wild types at 5 days post surgery.  Taken together these data indicate an unequivocal role 

for OPN in revascularization and recovery from hind limb ischemia.  

Endothelial cell function is generally considered to be of the utmost importance 

for neovascularization.  Therefore, in order to better understand our in vivo findings, we 

first sought to assess the capacity for endothelial cell tube formation in aortic explants 

from OPN deficient mice.  To do so, we employed the aortic ring vascular sprouting 

assay, which allows controlled measurement of neovascular sprouting from an intact 

vessel segment containing the full complement vessel constituents (96).  In this study, 
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OPN null specimens showed trends toward decreased sprout number, but no significant 

differences were detected between genotypes for sprout number or maximum sprout 

length.  These results indicate that OPN may not play a vital role in endothelial cell 

migration and tube formation during angiogenesis.   However, this assay is limited by the 

fact that it measures the angiogenic response of the aortic endothelium rather than that of 

the microvasculature, which participates in the in vivo neovascularization process. 

It is well-accepted that monocytes/macrophages bind to the vascular wall and 

localize to sites of angiogenesis and arteriogenesis where they play an important role in 

modulation of these processes (6).  This finding dates back 30 years to the observation by 

Shaper et al. that large numbers of monocytes adhered to the endothelium and passed into 

the vessel wall of forming collaterals in the dog heart (40).  Subsequent studies have 

shown a direct functional link between circulating monocyte concentration and 

arteriogenic collateral vessel formation (42,43).  MCP-1 is thought to be the primary 

stimulus for induction of monocyte infiltration in this setting, and MCP-1 treatment has 

been shown to accelerate collateralization and recovery in hind limb ischemia models in a 

variety of animal studies (44,47-53).  Conversely, animals deficient in MCP-1 or CCR2-

chemokine receptor, an MCP-1 receptor, have been shown to display reduced 

monocyte/macrophage infiltration and collateral formation (54,55).   

These studies have established monocyte and macrophage migration to the site as 

a pivotal event in ischemic limb revascularization and recovery.  In addition, previous 

work has indicated that OPN helps to mediate macrophage adhesion and migration, and 

other studies have indicated that OPN may be important for macrophage infiltration to 

sites of injury in vivo (178).  Due to this established connection between OPN and 
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macrophage migration, we hypothesized that OPN would play a role in macrophage 

infiltration and function at sites of postnatal vascular growth.  In order to test this 

hyposthesis, we compared macrophage/monocyte migration capacity of wild type and 

OPN deficient mice.  To do so, we utilized the transwell cell culture system to evaluate 

the migratory response of monocytes/macrophages that were isolated using peritoneal 

lavage.  In these studies, we found that OPN-/- monocytes/macrophages displayed 

significantly reduced migration in response to chemoattraction.  In initial experiments, 

we found that wild type cells exhibited a 3-fold stronger migratory response to 

homologous serum than OPN-/- cells.  Next, we evaluated whether this defect in 

migration would be sustained using an OPN-free chemotactic stimulus, MCP-1.  MCP-1 

induced significant migration of wild type cells relative to controls (1.7-fold), but the 

response was not as strong as it was to serum.  Importantly, as seen in the experiments 

using serum, this response was significantly higher than the OPN-/- cells, which did not 

display any significant migratory response to MCP-1 relative to cells exposed to no 

chemoattraction.  These findings corroborate a previous study that found OPN to be 

important to chemotactic response of macrophages to MCP-1 in vitro (221).  This 

experiment indicates that the migratory defect in the OPN-/- monocytes/macrophages is 

not dependent upon stimulation from exogenous OPN alone and that this response is 

driven at least in part by autocrine OPN stimulation.   

The significance of our in vitro findings showing decreased migration of OPN-/- 

mononctyes/macrophages toward MCP-1 is strengthened by the fact that MCP-1 has 

been shown by numerous studies to play an important role in in vivo stimulation of 

monocyte homing and activity at sites of collateralization.  It is believed that once these 
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cells have arrived at the site of angiogenesis/arteriogenesis, they produce growth factors 

and proteases that induce vascular endothelial and smooth muscle cell proliferation and 

stimulate remodeling of the vascular wall in order to satisfy increased blood flow 

demands.  In addition to providing paracrine stimulation of other cells types, monocytes 

have also been reported to tunnel through ischemic myocardium and form physical 

conduits that could be subsequently endothelialized and incorporated into the preexisting 

vasculature (222).  Therefore, defective migratory response to chemoattraction and the 

subsequent reduction in activity of monocytes and macrophages at the site of 

collateralization likely has significant, detrimental effects on revascularization and 

recovery of the ischemic limb in the OPN-/- animals. 

In this study, we have presented evidence suggesting that a definitive biological 

role exists for OPN in the vascular response in the mouse hind limb ischemia model.  We 

were able to confirm this finding using a range of anatomical, physiological, and 

functional measurements on the ischemic limb.  We have also reported evidence that 

suggests that this defect in angiogenesis/arteriogenesis could be driven by alterations in 

macrophage migration and function in the OPN null mice.  These findings represent the 

first evidence that OPN may be a key regulator for postnatal vascular growth and that 

OPN may be an important mediator of macrophage function in this setting.    
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CHAPTER 5 

IMPAIRED ANGIOGENESIS, EARLY CALLUS FORMATION, AND 

LATE STAGE REMODELING IN FRACTURE HEALING OF 

OSTEOPONTIN DEFICIENT MICE 

Introduction 

Bone fracture healing involves a well-characterized cascade of events that 

includes hematoma formation, inflammation, soft cartilaginous callus formation, 

neovascularization, osteoblastic callus mineralization, and osteoclastic remodeling of the 

hard callus back to mature lamellar bone (144).  This complex sequence of biological 

processes is orchestrated by a variety of growth factors and matricellular proteins that 

regulate differentiation, chemotaxis, and haptotaxis of the cell types responsible for 

mediating these events.  For example, the family of BMPs has been thoroughly 

characterized for induction of osteogenesis at fracture sites and is utilized clinically to 

promote bone regeneration (147).  In addition, Street et al have shown that VEGF, a 

known promoter of angiogenesis, stimulates neovascularization and promotes fracture 

healing, while treatment with angiogenesis inhibitors that specifically target vascular 

cells blocks fracture healing and produces atrophic nonunions (151,152).  Furthermore, as 

reviewed by Alford et al., ECM proteins, while not always vital for normal embryonic 

bone development, play an important role in mediating cellular function and serve as 

important modulators of bone regeneration (154).  Further understanding of the intricate 

interplay between this diverse set of cell types, endogenous factors, and matrix proteins is 
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a necessity for the development of improved therapeutic strategies for promoting bone 

repair. 

 Osteopontin is one of the major non-collagenous ECM proteins in bone.  It has 

been studied based on its role in a diverse range of biological processes including 

inflammation, immunity, angiogenesis, wound repair, tumor formation and metastasis, 

cellular survival and migration, and osteoclastic bone remodeling.  Although now known 

to also be present in a number of nonmineralized tissues, OPN was originally cloned 

from bone where it has been shown to have a functional role in controlling mineralization 

and remodeling.  OPN inhibits mineral crystal formation and growth (188,189), and OPN 

deficient mice have been found to possess increased mineral content and crystallinity 

(190).  In addition, OPN is known to be a major ligand for CD44 on bone cells, which is 

important in mediating osteoclast recruitment and function (187,191,192).  The in vivo 

importance of OPN in bone remodeling has been further demonstrated by the finding that 

OPN deficient mice undergo significantly less bone resorption than wild type mice in 

response to reduction in mechanical loading, ovariectomy, stimulation by parathyroid 

hormone, or administration of a high phosphate diet (193-196).   

While many researchers have studied the role of OPN in bone, it is also important 

for normal arterial physiology (173) and is produced by the primary cell types involved in 

blood vessel growth and remodeling: monocytes/macrophages, endothelial cells, and 

smooth muscle cells (174).   In addition to its interactions with CD44, OPN also contains 

an RGD motif, which allows it to interact with the integrin family of cell-adhesion 

molecules including α4β1 (158) and αvβ3 (176).  Previous in vitro studies have 

demonstrated that cellular interactions with OPN mediated through these integrins 



www.manaraa.com

 92

regulate a wide variety of cellular functions relevant to angiogenesis including vascular 

cell adhesion and spreading (179), macrophage adhesion and migration (178), endothelial 

cell migration (176), endothelial cell survival (175), chemotactic response of smooth 

muscle cells (179), and smooth muscle cell migration (180).  Other in vivo studies have 

also implicated OPN in neovascularization and remodeling of the vessel wall.  For 

example, OPN mRNA has been shown to be locally upregulated at the site of ischemia-

induced retinal neovascularization in mice (3), and OPN deficiency has been found to 

decrease angiogenesis around ectopic bone implants and to diminish arterial remodeling 

(2,173).  Based on these observations, it is likely that the vascular effects of OPN are also 

relevant to vessel formation and maturation during fracture healing.   

The role of OPN in a diverse set of processes including macrophage function, 

angiogenesis, ECM mineralization, and osteoclastic bone remodeling suggests that OPN 

may be important during multiple stages of fracture healing.  Previously, in situ 

hybridization studies have noted OPN expression in the fracture callus by 

osteoprogenitors in woven bone, hypertrophic chondrocytes in the cartilage to bone 

transitional region, and in the osteocytes, osteoblasts, and osteoclasts of the hard callus 

(144,197,198).  However, the specific function of OPN during bone healing has not been 

previously determined.  In the present study, we hypothesized that OPN deficiency alters 

neovascularization, mineralization, remodeling, and the restoration of mechanical 

properties during fracture healing.  To test this hypothesis, we have investigated fracture 

repair in wild type and OPN-/- mice.   
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Methods 

Animals 

Male wild type C57BL/6 mice were purchased from the Jackson Laboratory.  

Osteopontin deficient mice were originally received from Dr. Lucy Liaw of the Maine 

Medical Center (170), and they were subsequently back-crossed ten generations onto the 

C57BL/6 background.  All animals were fed a standard chow and had free access to 

water.  All protocols were approved by the Institutional Animal Care and Use Committee 

and done in accordance with the federal guidelines on the principles for the care and use 

of animals in research.    

Intact Bone Biomechanics 

The baseline biomechanical consequence of OPN deficiency in intact bone was 

assessed by testing femora from 10-week-old wild type (n=5) and OPN-/- (n=7) mice.  

Soft tissues were removed, and the bones were wrapped in PBS soaked gauze and frozen 

at –20°C.  The left femora from these mice were tested in three-point bending, and the 

right femora were testing in torsion.  All bones were thawed in PBS at room temperature 

for 3 hours prior to mechanical testing.  While thawing, the specimens were imaged using 

the VivaCT 40 micro-CT imaging system (Scanco Medical) at a voxel size of 21 µm.  

The micro-CT images were utilized to determine moment of inertia within the mid-

diaphyseal region, which was used to calculate bone material properties.   

For three point bending tests, specimens were loaded onto a three-point bending 

setup with a 6.2 mm distance between lower supports.  An 858 Mini Bionix II testing 

system (MTS) was then used to load the femora to failure at a rate of 0.05 mm/sec with 
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the anterior side in tension and posterior side in compression.  Maximum load, elastic 

modulus, work to failure, and post yield displacement were determined from the recorded 

force-displacement data.   

For torsional testing, we designed fixtures and a custom potting apparatus that 

allowed us to reproducibly align and pot the femora in Wood’s metal with a gauge length 

of 6.5 mm.  After the femora were potted, they were loaded in torsion at a rate of 3 

degrees per second until failure using an ELF 3200 testing system (Bose Corp.).  Using 

the recorded test data, maximum torque, shear modulus, work to failure, and post yield 

rotation were determined.   

Bone Fracture Healing Model 

 A well-established, unilateral femoral fracture model (4) was utilized to study 

bone repair in 10-week-old male wild type and OPN-/- mice.  Animals were anesthetized 

by intraperitoneal injection of xylazine (10 mg/kg) and ketamine (80 mg/kg).  All hair 

was removed from the surgical site, and the area was cleansed with sterile water followed 

by betadine.  A 25-gauge needle was inserted in a retrograde manner into the 

intramedullary canal of the right femur.  Subsequently, a mid-diaphyseal fracture was 

created in this leg, and the contralateral leg was left intact.  The mice were allowed to 

recover on a heated pad, and, after awakening, they were returned to their cages and 

allowed to ambulate freely.  Upon sacrifice, any animals that displayed intramedullary 

pin displacement, fractures that were not transverse, or fractures not in the mid-

diaphyseal region were removed from the study.   
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Micro-CT Analysis of Fracture Site Neovascularization 

Recently developed quantitative micro-CT based methods (130) were utilized for 

evaluation of fracture callus vascularity.  Mice were sacrificed using carbon dioxide 

inhalation at 7 days (wild type n=10, OPN-/- n=10) or 14 days (wild type n=9, OPN-/- 

n=6) post surgery.  The vasculature of the mice was sequentially perfused at physiologic 

pressure using heparinized (100 units/mL) normal saline, 10% neutral buffered formalin, 

and then again with heparinized saline.  The vascular system was then injected with a 

radiopaque, lead chromate based contrast agent (Flow Tech Inc.), which was then 

allowed to polymerize for 24 hours at 4°C.  The fractured femora were isolated from the 

surrounding musculature under a dissecting microscope, and the intramedullary pins were 

carefully removed.  The femora were stored at 4°C for 48 hours in 10% neutral buffered 

formalin, soaked 48 hours in a formic acid based solution for decalcification of the 

mineralized bone, washed thoroughly using water, and placed in 10% neutral buffered 

formalin until imaging.  The decalcification procedure is a vital step that allows 

radiodensity-based segmentation of the contrast-filled vessels from the surrounding 

mineralized tissues, and, therefore facilitates calculation of vascular morphology 

parameters.  The specimens were imaged at a 10.5 µm isotropic voxel size, and two-

dimensional (2-D) tomograms were reconstructed.  The volume of interest was defined 

by drawing contour lines along the borders of the callus in the 2-D slices.  Then, within 

this VOI, the 2-D images were globally thresholded based on x-ray attenuation and used 

to render binarized 3-D images of the radiopaque, contrast-filled vascular network 

segmented from the surrounding tissues.  These 3-D images were evaluated for vessel 

volume, volume fraction, and average diameter. 
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Micro-CT Analysis of Fracture Callus Formation and Mineralization 

 Mice were euthanized post-operatively for micro-CT imaging at 7 (wild type n=7, 

OPN-/- n=6), 14 (wild type n=7, OPN-/- n=6), 28 (wild type n=5, OPN-/- n=8), and 56 

(wild type n=7, OPN-/- n=6) days.  The femora were removed and dissected free from 

surrounding musculature under a dissecting microscope.  The intramedullary pins were 

removed, and the bones were wrapped in PBS soaked gauze and frozen at –20°C.  Upon 

removal from the freezer, the bones were placed in PBS to thaw at room temperature.   

While thawing in PBS, the specimens were imaged using micro-CT at a voxel 

size of 21 µm.  The newly formed fracture callus tissue was spatially segmented from the 

native cortical bone in the 2-D tomograms.  Prior to generation of 3-D images of the 

mineralized callus, we scanned a set of hydroxyapatite (HA) phantoms (0-800 mg HA) in 

order to define our mineralization threshold.  Based on the precedent set in a similar 

fracture healing study (151), we defined the fracture callus mineralization threshold (295 

mg HA/cm3) as 50% of the mineral density that we utilized to segment intact cortical 

bone.  Using this threshold, three-dimensional images of the mineralized callus were 

rendered, and total volume, percent mineralization, and average mineral density were 

measured on the digitally extracted callus tissue.   

Fracture Specimen Biomechanical Testing 

Specimens were thawed in PBS at room temperature for a total of 3 hours prior to 

mechanical testing, during which time micro-CT imaging was completed as discussed 

above.  For three-point bending tests, a pilot set of 28 day post fracture specimens were 

loaded onto a three-point bending setup as described for intact bone biomechanics (wild 
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type n=8, OPN-/- n=8).  Ultimate load, work to maximum load, and displacement at 

maximum load were determined from the recorded force-displacement data.  

For torsional mechanical testing, the fracture calluses were loaded to failure using 

the same testing setup described for intact bone biomechanics.  Stiffness, yield point, 

maximum torque, work to failure, rotation at failure, and post yield rotation were 

determined for the fracture specimens.  Specimens collected at the earliest time point (7 

days) were too fragile to test, so this analysis was only completed on specimens 14, 28, 

and 56 days post fracture (14 days wild type n=7, OPN-/- n=6; 28 days wild type n=5, 

OPN-/- n=8; 56 days wild type n=7, OPN-/- n=6). 

Real-time RT-PCR 

 RNA was isolated from the mid-diaphysis of intact bones and from fracture callus 

tissues at 3, 7, and 14 days post surgery.  The tissue was snap frozen and homogenized in 

QIAzol lysis reagent (Qiagen).  RNA was purified using a commercial kit (Qiagen) and 

then reverse transcribed into cDNA using the SuperScript™ III First Strand Synthesis 

System (Invitrogen), which was subsequently purified using a commercially available kit 

(Qiagen).  Primers were designed using the ABI Primer Express software (Table 5.1), and 

SYBR Green intercalating dye (Applied Biosystems) was used to perform real time PCR 

with the ABI Prism 7700 Sequence Detection System (Applied Biosystems).  Standards 

for each gene were amplified from cDNA and purified.  Standard concentrations were 

determined using spectrophotometric measurement at 260 nm, and standards were 

serially diluted to an appropriate range of concentrations.  Transcript concentration in 

template cDNA solutions was quantified from the linear standard curve and expressed as 

10-18 moles of transcripts per µg of total RNA. 



www.manaraa.com

 98

Table 5.1. Oligonucleotides for quantitative RT-PCR 
 
Target Gene (Accession No.) Sense Primer Antisense Primer 
Osteopontin (AF515708) 5’-CCCTCGATGTCATCCCTGTT-3’ 5’-CCCTTTCCGTTGTTGTCCTG-3’ 
Fibronectin (M18194) 5’-TCTCGGAGCCATTTGTTCCT-3’ 5’-TTGTCACAGCGCCAGCC-3’ 
Bone Sialoprotein (L20232) 5’- TCCTCCTCTGAAACGGTTTCC-3’ 5’-GGAACTATCGCCGTCTCCATT-3’ 
Col1α1 (U08020) 5’-TGGATTCCCGTTCGAGTACG-3’ 5’-TCAGCTGGATAGCGACATCG -3’ 
Lysyl Oxidase (NM_010728) 5’-TAGCGAAGCACATAGCATTG-3’ 5’-TGCAGCAATGAGTCTACAGC-3’ 
Col2α1 (NM_031163) 5’-CCAGGGCTCCAATGATGTAGAG-3’ 5’- TGTTTCGTGCAGCCATCCT -3’ 
Col10α1 (NM_009925) 5’-CAAGCTCATCCTATTCTCCGCT-3’ 5’-CCAAATGCATCTCCAGGGA-3’ 
Osteoprotegerin (U94331) 5’-GAAAGCAGCGTGCAGCG-3’ 5’-TCAAGGCAAGAAGCTGCTCTG-3’ 
RANKL (NM_011613) 5’-GGATGTGGCCCAGCGAG-3’ 5’-GCAGCATTGATGGTGAGGTG-3’ 
TRAP (AK008391) 5’-CAGCCCAAAATGCCTCGA-3’ 5’-GCTTTTTGAGCCAGGACAGC-3’ 
Cathepsin K (AK003425) 5’-TTGGTGGCTTTGGAAGGG-3’ 5’-TTAGTTAGCATCGCTGCGTCC-3’ 
 

 

Histological Analysis 

 Mice were perfused with heparinized 0.9% normal saline, followed by 10% 

neutral buffered formalin.  Tissues were decalcified using a formic acid based agent (Cal-

Ex II, Fisher Scientific), embedded in paraffin, and cut into 5 µm thick longitudinal 

sections.  Images shown are representative of sections taken from n≥4 different animals.  

Immunostaining was done with antibodies to OPN (Immuno-Biological Laboratories), 

fibronectin (Chemicon), and bone sialoprotein (University of Iowa Developmental 

Studies Hybridoma Bank).  Primary antibodies were detected using an avidin-biotin-

alkaline phosphatase method from a commercially available kit (Vector Laboratories), 

and the sections were counterstained with hematoxylin.  Using commercially available 

kits (Sigma-Aldrich), safranin O staining was completed for detection of cartilage, and 

multinucleated osteoclasts were identified based on staining for tartrate resistant acid 

phosphatase (TRAP).   

Picrosirius red staining was done using standard methods (223).  Briefly, 

specimens were deparaffinized, rehydrated, stained for 1 hour in 0.1% sirius red F3B in 

saturated picric acid, washed in 0.5% acetic acid, dehydrated, cleared in xylene, and 
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mounted for imaging using planar polarized light microscopy.  Samples were aligned 

approximately 45 degrees from the transmission axis of the polarizing filters in order to 

maximize brightness of the images from each sample and provide a consistent 

assessment.  Using this technique, one can qualitatively assess collagen fiber organization 

based on polarization color (224).   

Measuring Total Collagen Content 

For analysis of total collagen content, the hydroxyproline assay (225) was 

performed on fracture calluses.  Briefly, the tissue was lyophilized and dry weight 

measurements were recorded.  The samples were decalcified in 10% formic acid, diced 

into small pieces, digested in proteinase K, hydrolyzed in 6N HCl at 110°C, and assayed 

for hydroxyproline content using a standard colorimetric assay (225).  

Statistical Analysis 

 All data are presented as mean ± SEM.  Statistical analyses were performed using 

the Minitab software.  ANOVA was used to model the effect of genotype on all response 

variables.  P<0.05 was interpreted as significant in all analyses. 

Results 

Intact Bone Biomechanics 

To determine the baseline biomechanical phenotype in intact bone, we tested two 

matched sets of intact wild type and OPN-/- femora in torsion and in three-point bending.  

We found consistent results for the two testing methods, confirming that OPN-/- bones 

possessed higher elastic/shear modulus, lower maximum load/torque, and reduced work 

to failure and post yield deflection/rotation (Table 5.2).    
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Table 5.2.  Intact bone mechanics.  Comparison of wild type (n=5 for both testing 
setups) and OPN deficient (n=7 for both testing setups) intact bone properties.  
ap<0.05, bp<0.005. 
 

 3-Point Bending Torsion 

 WT OPN-/- WT OPN-/- 

Modulus 3.82 ± 0.24 5.28 ± 0.12b 2.22 ± 0.15 3.02 ± 0.13b 
(GPa, GPa)   

Max Load / Torque 18.4 ± 0.8 16.3 ± 0.3a 31.9 ± 2.9 21.5 ± 0.7b 
(N, N-mm)   

Work to Failure 14.7 ± 2.1 8.8 ± 0.5a 327 ± 17 167 ± 9b 
(N-mm, N-mm-deg)   

Post Yield Displacement 1.01 ± 0.61 0.61 ± 0.06a 14.5 ± 1.3 8.9 ± 0.7b 
(mm, degrees)   

 

 

Expression and Immunolocalization of ECM Proteins in OPN-/- mice 

Quantitative RT-PCR measurement of OPN expression in wild type and OPN-/- 

intact and fractured femora at 3, 7, and 14 days post-surgery illustrated increased OPN 

expression in the setting of fracture healing in the wild type animals.  In addition, it 

validated the complete absence of OPN mRNA in the knockout animals.  

Immunohistochemical staining of 28 day post surgery tissue sections taken from the 

fracture callus corroborated this finding, illustrating the lack of OPN at the protein level 

in the knockout animals and the localization of OPN in the fractured wild type bones 

(Figure 5.1). 

It has been hypothesized that the relatively mild bone phenotype seen in OPN-/-

mice without external stimulation could be due to compensatory activity of other, similar 

ECM proteins.  Here we measured the gene expression and protein localization of 
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fibronectin and bone sialoprotein (BSP), two bone ECM proteins that possess similar 

recognition sequences and properties to OPN.  These genes displayed intense upregulation 

in fractures relative to intact bones for both genotypes, but, other than a significant but 

modest deficiency in BSP expression at 14 days, we found that OPN deficient mice 

displayed no aberrant expression of these genes relative to the wild type animals.  Using 

immunohistochemistry, we further observed apparently normal localization of these related 

proteins within the calluses of OPN-/- mice at 14 days post fracture (Figure 5.1).   
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Figure 5.1.  Validation of OPN deficiency and evidence that no compensatory changes in 
gene expression or protein localization of bone sialoprotein and fibronectin occur in OPN-/- 
mice.  (A) Quantitative RT-PCR measurement of OPN, BSP, and FN expression in OPN 
deficient and wild type (WT) intact (No Fx) and fracture healing (Fx) bone samples 3, 7, 
and 14 days post-surgery expressed as 10-18 moles of transcripts per µg of RNA (ap<0.05). 
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Figure 5.1  (B) Representative immunohistochemistry photomicrographs of the fracture 
sites from WT and OPN deficient mice identifying OPN at 28 days post fracture and BSP 
and fibronectin at 14 days post fracture.  These data illustrate increased OPN expression in 
the setting of fracture healing and the absence of OPN mRNA in the knockout animals, in 
addition to the lack of OPN at the protein level in the OPN-/- mice and the localization of 
OPN in the wild types.  BSP and fibronectin were upregulated in the setting of fracture 
healing, and, other than a modest decrease in BSP expression in OPN-/- fractures at 14 
days, no alterations were seen in gene expression or protein quantity or localization of 
these ECM proteins in the fracture callus due to OPN deficiency.  
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Micro-CT Analysis of Fracture Site Neovascularization 

We utilized micro-CT imaging of contrast perfused, decalcified specimens for 

visualization and quantification of vascular growth within the fracture callus (Figure 5.2 

A).  Significantly reduced vessel volume and vessel volume fraction, along with a trend 

toward decreased average vessel diameter (p=0.071), were detected in the fracture 

calluses of OPN-/- mice compared to wild types at 7 days post surgery (Figure 5.2 B).  At 

14 days post surgery, while there was a significant reduction in average vessel diameter 

in OPN-/- mice, significant differences for other vascular parameters were no longer 

present (Figure 5.2 C).   

Micro-CT Analysis of Fracture Callus Formation and Mineralization 

Micro-CT imaging was utilized to measure volume, percent mineralization, and 

average mineral density within the newly formed fracture callus that was outside the 

periphery of the pre-existing cortical bone structure (Figure 5.3 A).   The OPN-/- mice 

displayed a significant reduction in callus volume relative to the wild types at days 7 (-

27%) and 14 (-30%).  No differences were seen in callus volume between genotypes at 

28 days, and callus volume was significantly increased (46%) in the OPN deficient mice 

compared to wild types at 56 days post fracture (Figure 5.3 B).  The OPN-/- mice 

displayed accelerated early mineral formation and had significantly higher percent callus 

mineralization at 14 days.  However, no differences were seen in percent callus 

mineralization at other time points (Figure 5.3 B).  Lastly, the average density of the 

mineralized portion of the fracture callus was significantly lower in the OPN deficient 

mice at 28 days, and this trend persisted but was no longer significant at 56 days (Figure 

5.3 B).   
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Figure 5.2.  Reduced early stage neovascularization in OPN deficient mice was 
recovered at later time points.  (A) 7-day and 14-day post surgery micro-CT images 
visibly showed reduced early neovascularization in OPN deficient mice that appeared to 
be recovered by 14 days.  (B) At 7 days, this angiogenic deficiency was found to be 
significant in quantitative 3-D image analyses of vascular volume and volume fraction 
(wild type n=10, OPN-/- n=10).  (C) At 14 days post surgery, micro-CT images and 
quantitative analysis revealed reduced average vessel diameter but an overall recovery of 
the early vascular defect seen in the OPN deficient mice (wild type n=9, OPN-/- n=6).  
Scale = 1 mm.  ap<0.05, bp<0.005, and cp<0.0005. 
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Figure 5.3.  OPN deficient mice displayed reduced early stage callus size, increased early 
mineralization, and delayed late stage remodeling.  (A) Micro-CT imaging captured the 
time course of mineralized callus formation and remodeling in the wild type and OPN-/- 
mice.  (B) Quantitative image analysis revealed that OPN-/- mice possessed reduced callus 
size 7 and 14 days post surgery but increased callus volume 56 days post surgery.  OPN-/- 
mice also displayed increased percent callus mineralization at 14 days.  Analysis of average 
mineral density within the newly formed callus found that this parameter increased 
significantly over time post fracture, and it was found that OPN deficiency resulted in a 
small but significant decrease in average mineral density at 28 days post fracture.  7-day 
(wild type n=7, OPN-/- n=6), 14-day (wild type n=7, OPN-/- n=6), 28-day (wild type n=5, 
OPN-/- n=8), and 56-day (wild type n=7, OPN-/- n=6).  Scale = 1 mm.  ap<0.05, bp<0.005.  

 



www.manaraa.com

 106

Fracture Specimen Biomechanical Testing 

In initial three-point bending tests done at 28 days post surgery, fractured OPN-/- 

femora displayed reduced deflection and work to ultimate load relative to wild types 

(data not shown).  However, in this pilot experiment, we found that the three-point 

bending setup resulted in artifacts from fracture callus indentation by the middle support.  

This affected the initial portion of the tests and made it difficult to accurately determine 

the stiffness and yield point, so, as a result, we switched to the torsional testing modality 

for biomechanical assessment.  Using torsional testing, we found that OPN-/- fractures 

possessed significantly reduced maximum torque at 14 and 28 days, but this difference 

did not persist at 56 days post fracture (Figure 5.4 A).  OPN-/- calluses required 

significantly less work to failure at 14 and 28 days post surgery (consistent with our pilot 

study using 3-point bending) but were similar to the wild types at 56 days (Figure 5.4 B).  

Furthermore, OPN deficient mice tended to have reduced post yield deformation at all 

time points, but ANOVA analysis did not find genotype to be a significant predictor 

(p=0.054) of this parameter (Figure 5.4 C).  Finally, stiffness was similar between 

genotypes at 14 and 28 days, but it was significantly higher in OPN-/- mice at 56 days 

post fracture, consistent with the observed increase in callus size at that time point 

(Figure 5.4 D).    
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Figure 5.4.  Altered fracture callus mechanics in OPN-/- mice.  OPN-/- mice had 
significantly reduced (A) maximum torque and (B) work to failure at 14 and 28 days post 
fracture.  The OPN deficient mice also showed a strong trend toward (C) decreased overall 
post yield deformation (p=0.054) as determined by ANOVA analysis and displayed (D) 
increased stiffness at 56 days.  14-day (wild type n=7, OPN-/- n=6), 28-day (wild type n=5, 
OPN-/- n=8), 56 day (wild type n=7, OPN-/- n=6). ap<0.05. 
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Gene Expression and Histology 

Cartilage Callus Formation 

Due to the reduction in fracture callus size at early time points, we hypothesized 

that the OPN deficient mice had defective development and hypertrophy of chondrocytes 

for formation of the early cartilaginous callus.  To test this hypothesis, we measured 

relative gene expression of type II and type X collagen, early and late markers of 

chondrocyte differentiation, respectively.  Quantitative RT-PCR measurement revealed 

that these genes were upregulated by 7 days post fracture, and there appeared to be a 

slight lag in chondrogenesis in the OPN deficient mice, which tended to have stronger 

persistence of cartilage markers at 14 days.  However, there was no significant difference 

in expression between genotypes (Figure 5.5 A), indicating that OPN deficiency does not 

significantly hinder chondrocyte formation and maturation at the fracture site.  Safranin 

O staining revealed similar staining patterns for the presence of cartilage in fracture 

callus sections from the two genotypes at 14 days post fracture, confirming this finding 

(Figure 5.5 B). 

Bone Remodeling 

Next, due to the larger residual fracture callus seen in OPN deficient mice at the 

latest time point, we hypothesized that OPN plays a critical role in osteoclastogenesis.  

To test this hypothesis, we first measured expression of RANKL and OPG, two of the 

most prominent proteins involved in regulation of osteoclast formation (226).  In 

addition, we measured expression of TRAP and Cathepsin K, two enzymes produced by 

mature osteoclasts to digest the mineralized bone matrix during remodeling.  Quantitative 

RT-PCR illustrated no significant differences in expression of these markers of 
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osteoclastogenesis between genotypes (Figure 5.6 A-B).  Furthermore, histological 

staining for TRAP activity indicated that the OPN deficient mice displayed similar levels 

of TRAP positive osteoclasts as their wild type counterparts at 28 days post fracture 

(Figure 5.6 C).  These data indicate that there is no defect in the basic machinery required 

for mature osteoclast formation and activity in the OPN-/- mice.  
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Figure 5.5.  Chondrocyte formation and maturation was not altered in the absence of 
OPN.  (A) Quantitative RT-PCR measurement of collagen II and collagen X, markers of 
chondrocyte formation and maturation, did not reveal differences in expression of these 
genes in the OPN deficient mice, indicating chondrogenesis was not altered in the 
absence of OPN.  Data are expressed as 10-18 moles of transcripts per µg of RNA.  (B) 
Safranin O staining confirmed normal cartilaginous callus formation at the fracture site in 
OPN deficient mice. 
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Figure 5.6.  Osteoclast differentiation is not altered in the absence of OPN.  Quantitative 
RT-PCR (expressed as 10-18 moles of transcripts per µg of RNA) showed OPN deficient 
mice had no alteration in the expression of (A) OPG and RANKL, regulators of osteoclast 
maturation, or (B) cathepsin K and TRAP, markers of osteoclast activity.  (C) Staining for 
TRAP activity showed similar osteoclast number and activity in the OPN-/- mice compared 
to wild types.  These results suggest that osteoclast differentiation is not altered in the 
absence of OPN. 
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Type I Collagen Content and Organization  

OPN has been postulated to bind to other ECM proteins and to be important in 

matrix reorganization after injury (170).  Therefore, we measured gene expression of type 

I collagen, the most abundant bone ECM protein, and lysyl oxidase (LOX), an enzyme 

that cross-links collagen fibers.  Results indicated that these genes undergo rapid 

upregulation in the setting of fracture healing, but no differential expression between 

genotypes was detected (Figure 5.7 A).  In addition, we measured total collagen content 

at the protein level in 56-day post surgery fracture callus specimens as determined by the 

hydroxyproline assay.  At this late time point, the bony callus is primarily composed of 

type I collagen, but a well-known limitation of this assay is its inability to distinguish 

between different collagen types.  Based on this assumption, results indicated that total 

collagen content (collagen weight / total dry weight) in the fracture callus was not 

different between genotypes with an average of 12.7±0.3% for wild types and 12.3±0.3% 

for OPN-/- mice.  Next, we utilized picrosirius red staining combined with polarized light 

microscopy for qualitative determination of collagen fiber organization.  This imaging 

technique suggested that, while there is no difference in collagen content, the newly 

formed bone in the OPN deficient mice contained abnormal collagen organization 

relative to their wild type counterparts at 56 days post fracture (Figure 5.7 B).   
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Figure 5.7.  Collagen I and lysyl oxidase expression was unchanged but collagen fiber 
arrangement was qualitatively different in OPN-/- mice.  (A) Quantitative RT-PCR 
measurement of type I collagen and lysyl oxidase was normal in OPN deficient mice as 
shown here expressed as 10-18 moles of transcripts per µg of RNA.  However, (B) polarized 
light microscopy of picrosirius red stained sections revealed a qualitative difference in 
polarization colors, suggesting altered collagen organization between genotypes. 
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Discussion 

In this study, we compared wild type and OPN-/- mouse femoral fracture callus 

formation, neovascularization, mineralization, and mechanical properties.  OPN 

deficiency was found to significantly alter but not prevent bone regeneration and 

remodeling of fractures in mice.  No compensatory overexpression of other ECM 

components was found, suggesting that there may be redundant mechanisms that allow 

fracture healing to occur (albeit delayed) in the absence of OPN due to common cellular 

binding sites (i.e. RGD sequence) and functional overlap between OPN and other ECM 

proteins.  Specifically, our data indicate that the presence of OPN is essential for normal 

early callus formation, neovascularization, and biomechanical strength and ductility.  

Additionally, OPN deficiency was found to delay the time course of remodeling of the 

fracture callus during the later stages of healing.  Lastly, while ECM content seemed 

generally unchanged, abnormal collagen organization was observed within the 

remodeling calluses of OPN-/- mice.   

At early stages of healing, OPN was found to play an important role in callus 

formation and to have a significant but transient effect on neovascularization.  The 

reduction in early vascular volume within the fracture callus at 7 days was recovered by 

14 days.  However, a significant decrease in average vessel diameter persisted indicating 

that OPN may also play a role in vessel maturation.  This may be related to the 

stimulatory role that OPN has on smooth muscle cell migration and chemotaxis 

(179,180), or it could be a consequence of the OPN-/- mouse macrophage phenotype, 

which has been linked to abnormal vascular remodeling (173).  Relevant to the latter 

hypothesis, OPN deficiency has been found to result in normal macrophage numbers but 
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decreased levels of macrophage activation in skin wounds, and intradermal injection of 

exogenous OPN has been found to stimulate macrophage infiltration (170,178).  The 

prior study was consistent with our findings, which indicated normal macrophage 

numbers (data not shown) but evidence that there may be defective functionality of these 

cells at the site of injury in the OPN-/- mice.  Therefore, in addition to the direct effects of 

OPN on endothelial and smooth muscle cell survival and migration, a reduced 

inflammatory response likely has secondary effects on callus neovascularization, vessel 

maturation, and ECM formation due to decreased reorganization of damaged tissue and 

cytokine production during the early stages of fracture healing.     

One interesting observation from this study is that, while the OPN-/- mice 

displayed a reduction in callus volume at 1 and 2 weeks post fracture, they possessed 

46% larger fracture calluses at 8 weeks.  The observed time dependent phenotype 

provides further evidence for the multifunctionality of OPN during fracture healing.  The 

increased residual fracture callus present in the OPN-/- mice at 56 days is likely due to the 

well-documented role that OPN has in mediating activity of mature osteoclasts during 

bone remodeling (187,191,192).  This defect, as was shown here, is not a result of 

inhibition of osteoclast differentiation or production of proteolytic enzymes.  Previous 

studies have also shown that osteoclastogenesis is not inhibited in the setting of OPN 

deficiency, and, in fact, a compensatory increase in osteoclast number has been reported 

in the bones of OPN-/- mice under basal conditions in some studies (191,194).  As 

elegantly shown by Chellaiah and co-workers, the reduction in functionality of OPN 

deficient osteoclasts can be attributed to decreased motility caused by a lack of cell 

surface expression of CD44 and activation of the αvβ3 integrin (191).   
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In the aforementioned study, Chellaiah and authors were the first to link OPN-/- 

osteoclast dysfunctionality to an observable in vivo bone phenotype in OPN deficient 

animals at baseline.  Although neither Rittling or Liaw found any abnormal bone 

phenotype upon initial development of the OPN knockout mouse (170,187), this group 

more recently reported larger femoral moment of inertia and, as determined by four-point 

bending, increased elastic modulus, ultimate moment, and energy to failure in OPN-/- 

mice (191).  In the present study, as verified using independent three point bending and 

torsional mechanical testing modalities, we found results that are partially contradictory 

to these previously published data.  Similar to Chellaiah et al., we observed an increase in 

the elastic modulus of OPN-/- bone.  However, the OPN deficient mice used for our study 

did not display increased femoral moment of inertia, and we found decreased maximum 

load and energy to failure relative to bones from wild type mice.  In addition, we found 

the OPN-/- mice to have an approximately 40% decrease in post yield deformation, a 

parameter that was not reported in previous studies.  Taken together, these biomechanics 

data indicate that OPN deficiency increases the material stiffness of the bone tissue and 

also causes it to be more brittle.  A few possible explanations exist for the discrepancy 

between our data and the previously published results.  The slightly older mice used in 

the Chellaiah publication could have displayed a phenotype that develops as the mice age 

due to a mild, but prolonged defect in osteoclast functionality.  These divergent results 

could also be a function of the difference in genetic background.  The previous study was 

completed with mice on a hybrid background, while the mice used here were backcrossed 

onto a C57BL/6 genetic background.  The potential relevance of this cannot be ignored 

considering the significantly dissimilar baseline bone phenotype between background 
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strains (227) and the different susceptibility of each mouse strain to a variety of 

pathologies including osteoporotic bone loss, femoral artery blockage, and 

atherosclerosis (228-231).  The final difference of note is that the mice used in our study 

were derived from the OPN deficient mouse population developed by Liaw et al., rather 

than the Rittling mouse.  The two different OPN knockouts were derived using slightly 

different methodologies, and the Rittling mouse has been found to express a small but 

likely non-functional fragment of the OPN protein (170,187).   

Significant functional effects of OPN deficiency were also evident in the 

biomechanical tests on the fracture callus specimens.  The physical significance of altered 

callus size was evident in the torsional tests, which showed that the smaller OPN-/- 

calluses at 14 days post fracture possessed significantly reduced maximum torque and 

work to failure.  Interestingly, significantly reduced mechanical properties (maximum 

torque, work to failure) were also found in the OPN deficient mice at 28 days post 

fracture, but no differences were seen in callus size or percent mineralization between 

genotypes at this endpoint.  These data, in addition to the strong overall trend toward 

decreased post yield behavior in the OPN-/- mice, indicate the existence of fracture callus 

material property differences as a result of OPN deficiency.  The observed brittle material 

behavior in the OPN-/- fracture specimens corroborates the observation of decreased 

ductility in OPN-/- intact bone, and this consistent decrease in bone quality may be the 

result of altered organization of the ECM within the callus of the OPN-/- mice.   The 

biological relevance of the callus volume was also evident at 56 days, at which point the 

OPN-/- specimens possessed significantly increased stiffness.  It should be noted, 

however, that at 56 days, the geometry of the fracture callus had undergone significant 



www.manaraa.com

 117

remodeling in both genotypes and was relatively small compared to callus size 

measurements at earlier time points.  However, even at 56 days, it seemed that neither 

group had achieved a remodeling equilibrium or completely regained the mechanical 

properties of intact bone.  This incomplete restoration of bone quality can be readily 

explained by the fact that, while the bone geometry is approaching baseline, mineral 

density of the fracture callus has only reached approximately 60% of the mineral density 

of normal intact bone at this endpoint (data not shown).  

Despite alterations in size and biomechanical strength of the fracture callus, other 

than a modest change found in BSP mRNA levels, measurement of gene expression, 

immunohistochemical protein localization, and quantitative measurement of collagen 

content does not indicate compensatory changes in other ECM proteins in OPN-/- mice.  

However, while no differences were seen in total collagen content, picrosirius red 

staining suggested abnormal collagen organization within remodeling OPN-/- fracture 

calluses, which could be a result of alterations in collagen fibrillogenesis or turnover in 

OPN deficient mice.  This interpretation agrees with previous observations that OPN 

deficiency results in altered collagen fibril diameter and organization in skin wounds 

(170) and increased collagen maturity in bone (190).  Considering these observations, in 

conjunction with the fact that OPN has a high affinity for binding collagen (232), it is 

possible that the absence of an OPN-collagen interaction could result in aberrant fibril 

organization and contribute to the reduced mechanical integrity detected here for both 

intact and fractured OPN-/- bones.  Altered collagen organization may have a detrimental 

effect on the ability of the bone tissue to dissipate energy as mineralized fibrils begin to 

move relative to each other during post yield deformation of the tissue.  Consistent with 
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this interpretation, Hansma and co-workers have recently hypothesized that the 

mechanical behavior of bone is greatly influenced by nonfibrillar matrix proteins that 

form sacrificial bonds between mineralized collagen fibers.  They specifically suggest 

that OPN and related proteins may be important components of the “glue” that resists 

separation of collagen fibers and propagation of cracks during mechanical failure 

(233,234).  This recent work may provide a mechanistic explanation for both the 

alteration in collagen organization and the observed brittle behavior in the bones of the 

OPN-/- mice. 

In conclusion, OPN deficiency significantly alters several stages of the bone healing 

process but does not prevent bone union.  More specifically, this study indicates that 

OPN plays multiple roles during early callus formation, neovascularization, and late stage 

remodeling.  In addition, our extensive biomechanical analyses suggest that OPN 

functions to enhance bone strength and its ability to dissipate energy prior to failure.  The 

fact that no alterations in content of other ECM proteins were found suggests that the 

phenotype could be driven by altered matrix turnover and collagen organization, which 

appears to span multiple organ systems.  Therefore, we believe that a unifying link 

between the vascular and bone related defects found here may be related to diminished 

collagenous matrix organization and remodeling.  Hypothetically, this defect could 

decrease the ability of cells to bind to ECM and respond appropriately to environmental 

cues in the absence of OPN.  However, future studies are necessary to more definitively 

determine whether diminished ECM integrity is a primary effect of OPN deficiency or 

secondary to altered cellular functionality in the absence of OPN.  These findings 

contribute to an improved understanding of the role of OPN in vivo and provide new 
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insight into bone biomechanics and mechanistic control of vascularization and bone 

regeneration during fracture repair. 
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CHAPTER 6 

SUMMARY AND FUTURE CONSIDERATIONS 

Micro-CT Vascular Imaging 

 The micro-CT vascular imaging techniques developed in Aim 1 provided great 

utility in subsequent aims of this thesis project.  In addition, we have been able to 

collaborate with researchers within and outside of our institution to assist in 

implementation of this technique for a number of ongoing studies.  As discussed in detail 

in chapter 3, this technique has broad applicability to studies involving analysis of 

vasculature anatomy within small animal models.  However, some aspects of this 

methodology still have room for improvement.  

A continued obstacle during implementation of this technique is choosing the 

appropriate threshold value for vascular segmentation.  As mentioned, this part of the 

process is somewhat subjective, and choosing the appropriate global threshold involves 

balancing the tradeoff between omission of small vascular structures and overestimation 

of the larger vascular structures in the final 3-D images.  This tradeoff introduces artifacts 

into the quantitative analyses as well, since omission of small vessels has effects such as 

decreased vessel number, connectivity, etc, as shown in the threshold parameter 

sensitivity analysis in Chapter 3 (Figure 3.3).    In general, this technique provides a 

simple and useful platform for testing and implementation of micro-CT applications.  

However, many researchers have developed segmentation methods that are specifically 

designed for 3-D visualization of blood vessel networks.  Implementation of one of these 

algorithms may help to overcome some of the negative tradeoffs associated with global 

thresholding and thus yield more accurate 3-D renderings.   
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Over the past 15 years, dozens of new vascular segmentation algorithms have 

been developed, and these varied techniques have employed many different image-

processing strategies such as filtering, differential analysis, statistical methods, and even 

artificial intelligence concepts.  One example, which was specifically designed for 

improved segmentation of small diameter vessels, is the curve evolution for vessel 

segmentation (CURVES) algorithm (235).  CURVES falls into the deformable models 

category of segmentation methods and utilizes a “level-set approach” which determines 

the vessel axes before estimating their radii. The CURVES algorithm was primarily 

designed for segmentation of magnetic resonance angiography (MRA) images for use in 

pre-planning and performing image-guided neurosurgery, but this technique can be 

applied to 3-D CT data as well.  Figure 6.1 compares MRA vascular image segmentations 

using global thresholding and the CURVES algorithm.  Here, maximum intensity 

projection (MIP) images are shown as a standard with which to compare the binarized, 

segmented images.  MIP is a technique that depicts the brightest pixel value that is 

encountered along a viewing ray that travels through the stacked tomographic images.  

MIP is computationally fast, but the 2-D results do not provide a good sense of depth or a 

means for further 3-D computational analysis.  Figure 6.1 illustrates the increased 

capacity for resolving smaller caliber vessels using the CURVES algorithm, but also 

shows that this methodology introduces artifactual “thinning” of larger diameter vessels 

in MRA data.  However, this artifact does not persist in CT data due to differences in the 

nature of the vessel intensity profile between imaging modalities, and the authors 

exemplify this through an apparently more accurate segmentation of bronchi from a lung 

CT scan (Figure 6.2).  Incorporation of this or a similar vascular-specific segmentation 
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algorithm would improve the accuracy of the rendered 3-D images and subsequent 

quantitative analysis.    
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Figure 6.1.  Comparison of global thresholding to CURVES algorithm for vascular 
segmentation.  Note that, compared to thresholding, the CURVES algorithm is able to 
better depict the connectedness and fine detail of the smaller vascular structures.  The 
authors note that the apparent “thinning” of the larger vessels is an artifact that occurs 
due to the Gaussian vessel intensity profile that exists in MRA images.  Images borrowed 
from (236). 
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Figure 6.2.  CURVES algorithm segmentation of CT data from a lung scan.   Note that 
the artifactual thinning of the larger vessels does not occur in CT data since its intensity 
profile is not Gaussian.  Images modified from (235). 

 

 

Development of new in vivo contrasts and imaging techniques is another area with 

vast room for expansion in vascular micro-CT imaging.  Improvement in this area would 

grant the opportunity to perform longitudinal analyses within a given experimental 

animal.  This would allow for more information to be gathered from each experiment and 

spare animal lives and research time required to complete a given study.  Investigators in 

this area have concentrated on development of contrasts with longer circulation times 

based on slower clearance from the blood pool, allowing more time for imaging of the 
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anesthetized animal (237).  In our limited experience, these agents have provided 

insufficient contrast from surrounding tissues, but increasing the attenuation of the 

contrast or simply optimizing delivery to the circulation could make this a feasible 

methodology.  However, longitudinal in vivo scans on a single animal increase the 

amount of total X-ray exposure, and the potential biological effects of this amplified 

radiation dose must be considered.  Additionally, in vivo imaging would eliminate the 

possibility of decalcifying bone tissue, thus decreasing the ease of analyzing vascular 

networks in proximity to bone structures.  Therefore, as in vivo vascular contrasts and 

imaging techniques evolve, researchers must be cognizant of the new difficulties that 

may be encountered upon their implementation.  

Biological Functions of OPN 

 In chapters 4 and 5, we described studies that, for the first time, addressed the in 

vivo relevance of OPN for its role in postnatal vascular growth and bone healing.  As part 

of these studies, we utilized picrosirius red staining combined with polarized light 

microscopy to uncover an alteration in collagen fiber organization within the fracture 

calluses of OPN deficient mice.  In future work, it would be important to further 

understand this finding and to better determine the role of OPN in tissue remodeling 

following injury and for its contributions to normal and healing bone mechanics.  Along 

these lines, using electron microscopy and other mechanics techniques, one could provide 

valuable insights into the role of OPN in determining the ultrastructure of bone and other 

tissues and how this organization functionally affects the mechanical properties.   

As discussed in Chapter 5, we have found that OPN is an important contributor to 

post yield behavior, and OPN deficient bone was found to be more brittle in nature.  As 
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has been elegantly studied by Hansma and colleagues, sacrificial bonds or glue-like 

filaments are thought to bridge mineralized collagen fibrils and have substantial effects 

on the fracture resistance of bone (233,238-240).  As illustrated in Figure 6.3, these 

bridging molecules can be imaged with scanning electron microscopy (SEM) and their 

mechanical role can be measured with atomic force microscopy (AFM).  However, the 

constituents and nature of the sacrificial bonds between collagen fibrils remain unknown.  

As mentioned in Chapter 2, OPN possesses a high level of phosphorylation and thus, 

negative charge at physiologic pH.  As a result of its negative charge, OPN binds strongly 

to multivalent, positively charged ions such as calcium.  Due to this property, it has been 

hypothesized that OPN binds to the calcium ions within the hydroxyapatite component of 

mineralized collagen fibrils.  Based on this idea, OPN is suspected to be a prime 

candidate to participate in the “glue” between mineralized collagen fibrils in bone.  Using 

SEM and AFM techniques, comparison of wild type and OPN deficient bone specimens 

could further unravel the interactions of OPN with other ECM constituents and better 

elucidate the mechanism by which OPN contributes to bone mechanical behavior.   
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Figure 6.3.  Visualization and mechanical measurement of glue-like filaments that resist 
separation of collagen fibrils.  (A) SEM images illustrating sacrificial bonds or “glue-like” 
filaments that bind together collagen fibrils and potentially resist their separation.  (B) 
Schematic depiction of these filaments resisting separation of collagen fibrils during 
propagation of a bone crack.  (C) Illustration of an AFM setup that can be used to measure 
the forces that resist mineralized collagen fibril separation in bone. (D) Graph displaying 
the contribution of sacrificial bonds to material properties by showing representative force 
measurements of a material with and without sacrificial bonds.  The slope of the force-
displacement recordings (dashed and dotted lines) show that these bonds can contribute to 
increased initial stiffness.  The shaded area between the recorded force-displacement data 
sets represents the significant enhancement of fracture toughness when sacrificial molecules 
are present.  Modified from (233,240).  
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As previously mentioned we postulate that altered ECM organization and 

remodeling across multiple organ systems could be the unifying characteristic that drives 

the bone and vascular phenotypes that we have found in the OPN null mice.  It has been 

previously reported that OPN deficient mice possess altered vascular ECM organization, 

which is apparent even at baseline (see Figure 6.4).  This study by Myers et al. also found 

that OPN knockouts displayed reduced remodeling of the vessel wall following carotid 

artery ligation, a defect that the authors attributed to altered ECM organization and 

reduced leukocyte invasion (173).  Many of the same mechanisms that control vascular 

remodeling in the pathological sense (i.e. neointima formation following vascular injury) 

also direct vessel formation and remodeling in more beneficial circumstances (i.e. 

revascularization of ischemic tissues).  To this end, in Chapter 4, we described findings 

that paralleled the results from the work of Myers et al.  This study indicated that OPN-/- 

mice also displayed delayed revascularization and functional limb recovery following 

onset of hind limb ischemia and reduced monoctye/macrophage chemotaxis.  We 

postulate that these in vivo hind limb ischemia results are a manifestation of a defect in 

arteriogenic vascular remodeling, a process thought to be mediated by monocytes and to 

be the most important contributor to reperfusion of ischemic tissues.  Likewise, in 

Chapter 5, bone fracture studies indicated that OPN deficiency resulted in diminished 

early neovascularization and a persistent decrease in vessel diameter, which could be 

further indicative of a role for OPN in vessel wall remodeling and maturation.  
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Figure 6.4.  Histological images displaying loosely organized collagen matrix in OPN 
deficient mice.  This observation is particularly evident in the adventitial layer and was 
found to result in increased vascular compliance and possibly contribute to reduced 
vascular remodeling following carotid artery injury.  Images borrowed from (173).  

 

  

Taken together, previous work and our own studies point to OPN playing an 

important role in formation and maintenance of organized ECM and in mediating 

monocyte/macrophage functionality.  However, it isn’t completely clear that these effects 

are primarily driven by the lack of OPN behaving as a structural component within the 

ECM.  For example, as mentioned previously, it was recently determined that interactions 

with an intracellular form of OPN plays an integral role in cell migration and activity of 

multiple cell types, including activated macrophages (167).  Therefore, it is also possible 

that the absence of OPN has a more direct effect on cellular functionality and that 

disorganized collagenous matrices in OPN-/- mice are a secondary effect of the cells’ 

ability to remodel and organize the ECM appropriately.   

 To gain insight into the functional importance of cell-mediated effects of OPN 

versus those due to ECM structural alterations, bone marrow transplant (BMT) studies 

could be performed.  In these studies, wild type bone marrow (BM) would be 
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transplanted into irradiated OPN-/- mice and vice versa.  After approximately 5 weeks are 

given for the donor BM cells to engraft into the irradiated recipient mice, this procedure 

would yield two sets of experimental animals.  One set of animals would only produce 

OPN in BM-derived cells such as monocytes/macrophages and, therefore, have no OPN 

in the ECM peripheral to the BM.  Conversely, the other set of animals would possess 

OPN in the ECM and tissue resident cells but have no OPN expression in BM-derived 

cells.  Then, it would be important to challenge these animals with hind limb ischemia or 

bone fracture and compare their responses relative to “control animals”, which in this 

case would be irradiated wild type mice receiving wild type BM and irradiated OPN-/- 

mice receiving OPN-/- bone marrow.  Using this experimental design, one could measure 

the relative importance of the contribution of OPN to ECM structure versus functionality 

of BM-derived monocyte / macrophage cells.  While this experimental design could 

potentially lend a great deal of insight into the mechanisms behind OPN functionality, it 

is not without significant assumptions.  For example, as mentioned in Chapter 2, EPCs 

are also believed to be derived from the bone marrow and to be important participants in 

neovascularization.  Therefore, the effects of BMT and the formation of the described 

chimeric mice on EPC activity could not be ignored.   

 Along those lines, it is also noteworthy to revisit two recent studies which have 

indicated that OPN plays a role in regulation of the hematopoietic stem cell (HSC) niche 

(171,172).  These investigators found aberrant localization and increased cycling of HSC 

in OPN-/- mice, and both studies, which were published within a few months of each 

other, independently concluded that OPN participates in HSC localization and as a 

negative regulator of HSC proliferation.  Functional effects of the role of OPN in 
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regulation of the HSC niche have yet to be determined.  As more completely discussed in 

Chapter 2, EPC mobilization and homing to sites of neovascularization are thought to be 

a vital part of the physiological response to pro-angiogenic cues.  These cells are believed 

to be derived from the HSC niche, and, therefore, their functionality could be affected by 

the absence of OPN.  Thus, one could hypothesize that EPC numbers, homing, or ability 

to incorporate into functional vasculature could be altered in the absence of OPN, and 

this could prove to be an important area for future studies.     

 Chapter 2 of this thesis summarized a number of in vitro cell signaling studies 

characterizing the multifaceted properties of OPN.  These previous studies have 

implicated OPN in cell survival, migration, and functionality of numerous cell types, and 

these effects are believed to be mediated through a wide variety of integrin and CD44 

receptors via intact OPN or cleavage fragments.  The importance of OPN in this sense 

has been well established.    However, the inherent complexity of this system has made it 

difficult to directly translate findings from studies in cells to a net effect in vivo.  The 

current thesis is comprised of many of the first studies that have carefully examined the 

overall importance of OPN on postnatal vascular growth and bone healing in living 

animals.  As summarized in Figure 6.5, these studies have allowed us to uncover 

significant, new findings and have allowed us to further speculate on what we believe to 

be the prominent mechanisms by which OPN exerts its effects.  However, as discussed in 

this chapter, much remains to be understood.  To this end, it is anticipated that the results 

of this work will spur further efforts that will lead to an even better understanding of both 

OPN functionality and the overall physiological control of postnatal vascular growth, 
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development and homeostasis of bone tissue mechanical integrity, and bone healing 

processes.   
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Figure 6.5.  Flowchart displaying our hypothesized overall view on the effects of OPN 
deficiency in the animal models utilized in this dissertation.  It should be emphasized that 
reduced macrophage function is not thought to directly lead to reduced osteoclast 
function.  The right side of the flowchart is meant to infer that, since osteoclasts are 
derived from common haematopoietic progenitors and, therefore, closely related to 
macrophages, it is likely that OPN deficiency has parallel effects on the ability of these 
cells to carry out their specialized functions.  
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APPENDIX A 

MICRO-CT VASCULAR PREPARATION 

Reagents 

1. 0.9% normal saline 

2. Heparin 

3. Contrast agent 

4. 10% neutral buffered formalin 

Solutions 

1. 0.9% Normal saline (ie. 9 grams sodium chloride + 1000 ml deionized water) 
 

2. Heparinized Saline (100 units heparin/ml normal saline) 
 

3. *Note:  Nitric Oxide donors can be used to ensure vasodilation 

Materials 

1. Small surgical scissors, hemostat forceps, and small dissecting forceps 
 

2. 23 gauge butterfly needle  
 

3. IV drip bags with tubing or perfusion pump 

Procedure 

1. Make Heparinized Saline and prepare IV bags with saline/formalin 

2. Sacrifice animal by CO2 asphyxiation or over-anesthetization 

3. Prepare animal for perfusion 

a. Secure the animal on its back so that it is in a fully extended position. 



www.manaraa.com

 133

b. Make a horizontal incision through the skin across the lower portion of the 

abdomen.  

c. Raise the skin with small forceps (to avoid cutting into organs) and make a 

superficial, vertical incision up to the sternum. 

d. Cut through the diaphragm to open the chest cavity, while avoiding cutting 

into the liver and lungs. 

e. Cut diagonally through the thoracic cage approximately halfway between 

the sternum and backbone in a “Y” pattern to make the heart accessible. 

f. Secure the lower part of the sternum with hemostat forceps and use the 

weight of the instrument to stabilize the ribcage in a cranial direction, 

exposing the heart. 

4. Perfuse heparinized saline at physiologic pressure (~100 mm Hg) through an IV 

drip bag or using a perfusion pump 

a. Gently hold the heart with forceps and insert a butterfly needle (attached 

to tubing) into the left ventricle. 

b. A small drop of superglue can be a useful means for stabilizing the 

interface between the needle and the heart.  

c. Cut the inferior vena cava (IVC) to create a vent to drain out re-circulating 

blood and perfusate. 

d. Start the flow of the saline. 

e. Perfuse approximately 10 minutes or until the internal organs become 

blanched in appearance.  The liver transitioning from a dark red to a light 
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grayish color is the best way to visually assess the completeness of the 

perfusion 

5. Pressure Fixation: 

a. Proceed with this step only after blood has been completely cleared with 

heparinized saline. 

b. Attach the reservoir containing 10% formalin to the butterfly needle, 

which should never be displaced from the left ventricle. 

c. Perfusion fix the animal with approximately 30- 50 mL 10% formalin. 

d. When fixation is complete, the animal should become very stiff and pale 

yellow in appearance. 

6. Briefly perfuse again with heparinized saline to clear the formalin from the 

vasculature 

7. Perfuse with the contrast agent of choice (ie. iodinated contrast solutions, 

polymerizing Microfil injection agents, or barium sulfate / gelatin suspensions): 

a. It may be easiest to inject the contrast agent using a 10 ml syringe that 

attaches to the butterfly needle.   

b. Perfuse approximately 10 ml or until you see contrast agent re-circulate 

from the IVC at the top of the liver. 

c. Internal organs including the liver, kidneys, etc. should turn the color of 

the injected contrast agent if applicable 

 
8. Dissect out the tissue of interest and immerse in 10% neutral buffered formalin 

until proceeding with micro-CT imaging.  For cases where the vasculature of 

interest is in close proximity to bone, soak the specimen in a formic acid or other 
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decalcification agent to reduce the attenuation of these hard tissues and facilitate 

global thresholding-based segmentation of the contrast filled vasculature from the 

surrounding tissues.   
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APPENDIX B 

HIND LIMB ISCHEMIA SURGERY 

Materials 

1. Small surgical scissors 

2. Hemostat forceps 

3. 2 small, curved dissecting forceps 

Procedure 

1. Sterilize instruments with glass bead sterilizer 

2. Anesthetize mouse 

3. Shave medial side of animals thigh from knee up 

4. Remove remainder of hair in this region with depilatory cream 

5. Cleanse skin with water to remove excess cream and hair and then clean skin with 

betadine 

6. Make a single longitudinal skin incision along the medial thigh that tracks the 

path of the femoral artery. 

7. Ligate the superficial femoral artery and vein proximal to the caudally branching 

deep femoral artery.  Be sure to separate the femoral nerve form the vessels at the 

ligation point and do not loop the sutures around the nerve.   

8. Perform the distal ligation just proximal to the branching of the tibial arteries.  

Again, do not ligate the nerve that is adjacent to the vessels being ligated. 

9. Dissect the length of the femoral artery/vein free from the musculature and free 

from the adjacent nerve between the two ligation points. 
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10. Cut any vessels that branch off of the artery/vein that have been dissected free 

tissue and excise the entire artery/vein located between the ligation points. 

11. Irrigate the surgical field and carefully close the skin incision using 5-0 silk 

sutures. 

12. Place Elizabethan collar on mouse to hinder the mouse from biting at 

wound/sutures. 

13. Allow the animal to awaken from anesthesia on a heating pad. 

14. Allow animal to ambulate freely upon awakening.  
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APPENDIX C 

FEMORAL FRACTURE SURGERY 

Materials 

1. Small surgical scissors 

2. Hemostat forceps 

3. Small dissecting forceps 

4. No. 15 scalpel 

Procedure 

1.  Sterilize instruments with glass bead sterilizer 

2. Anesthetize mouse 

3. Shave lateral side of animals thigh from knee up 

4. Remove remainder of hair in this region with depilatory cream 

5. Cleanse skin with water to remove excess cream and hair and then clean skin with 

betadine 

6. Make longitudinal skin incision along lateral side of leg from knee towards hip 

7. Using a No. 15 scalpel, make a longitudinal cut along the lateral condyle of the 

femur 

8. Tease apart the biceps femoris and vastus lateralis muscles to expose the lateral 

side of the femur 

9. Slide the patella to the medial side of the condyle 

10. Flex knee to expose the condyle and insert a 25-gauge needle retrograde into the 

intramedullary canal.  Note: I use the beveled needle to puncture the condyle and 



www.manaraa.com

 139

then cut off the beveled “point” and then re-insert the needle to avoid puncturing 

the proximal end of the femur during insertion of the needle. 

11. Then, using the No. 15 scalpel, create a mid-diaphyseal transverse fracture 

12. Slide the needle slightly back out of the intramedullary canal of the femur and cut 

the needle to the appropriate length (so that the intramedullary support is flush 

with the surface of the condyle at the needle insertion point). 

13. Slide the patella back into its native position, covering the condyle. 

14. Using 5-0 silk sutures, place one suture to hold the biceps femoris and vastus 

lateralis muscles together. 

15. Place one suture connecting the patellar ligament to the adjacent musculature on 

the lateral side (to keep the patella from sliding back out of place). 

16. Close the skin incision using interrupted sutures and staples. 

17. Allow the animal to awaken from anesthesia on a heating pad. 

18. Allow animal to ambulate freely upon awakening. 

 



www.manaraa.com

 140

REFERENCES 

 

1. Murray CJ, Lopez AD 1997 Mortality by cause for eight regions of the world: 
Global Burden of Disease Study. Lancet 349(9061):1269-76. 

2. Asou Y, Rittling SR, Yoshitake H, Tsuji K, Shinomiya K, Nifuji A, Denhardt DT, 
Noda M 2001 Osteopontin facilitates angiogenesis, accumulation of osteoclasts, 
and resorption in ectopic bone. Endocrinology 142(3):1325-32. 

3. Takagi H, Suzuma K, Otani A, Oh H, Koyama S, Ohashi H, Watanabe D, Ojima 
T, Suganami E, Honda Y 2002 Role of vitronectin receptor-type integrins and 
osteopontin in ischemia-induced retinal neovascularization. Jpn J Ophthalmol 
46(3):270-8. 

4. Bonnarens F, Einhorn TA 1984 Production of a standard closed fracture in 
laboratory animal bone. Journal of Orthopaedic Research 2(1):97-101. 

5. Scholz D, Ziegelhoeffer T, Helisch A, Wagner S, Friedrich C, Podzuweit T, 
Schaper W 2002 Contribution of arteriogenesis and angiogenesis to postocclusive 
hindlimb perfusion in mice. J Mol Cell Cardiol 34(7):775-87. 

6. Arras M, Ito WD, Scholz D, Winkler B, Schaper J, Schaper W 1998 Monocyte 
activation in angiogenesis and collateral growth in the rabbit hindlimb. J Clin 
Invest 101(1):40-50. 

7. Ito WD, Arras M, Scholz D, Winkler B, Htun P, Schaper W 1997 Angiogenesis 
but not collateral growth is associated with ischemia after femoral artery 
occlusion. Am J Physiol 273(3 Pt 2):H1255-65. 

8. Risau W 1997 Mechanisms of angiogenesis. Nature 386(6626):671-4. 

9. Asahara T, Masuda H, Takahashi T, Kalka C, Pastore C, Silver M, Kearne M, 
Magner M, Isner JM 1999 Bone marrow origin of endothelial progenitor cells 
responsible for postnatal vasculogenesis in physiological and pathological 
neovascularization. Circ Res 85(3):221-8. 



www.manaraa.com

 141

10. Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, 
Schaper W 2003 Bone Marrow-Derived Cells Do Not Incorporate Into the Adult 
Growing Vasculature. Circ Res. 

11. Senger DR, Perruzzi CA, Feder J, Dvorak HF 1986 A highly conserved vascular 
permeability factor secreted by a variety of human and rodent tumor cell lines. 
Cancer Res 46(11):5629-32. 

12. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF 1983 
Tumor cells secrete a vascular permeability factor that promotes accumulation of 
ascites fluid. Science 219(4587):983-5. 

13. Lobb RR, Key ME, Alderman EM, Fett JW 1985 Partial purification and 
characterization of a vascular permeability factor secreted by a human colon 
adenocarcinoma cell line. Int J Cancer 36(4):473-8. 

14. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL 
1996 Activation of vascular endothelial growth factor gene transcription by 
hypoxia-inducible factor 1. Mol Cell Biol 16(9):4604-13. 

15. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, 
Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons 
L, Collen D, Risau W, Nagy A 1996 Abnormal blood vessel development and 
lethality in embryos lacking a single VEGF allele. Nature 380(6573):435-9. 

16. Fong GH, Rossant J, Gertsenstein M, Breitman ML 1995 Role of the Flt-1 
receptor tyrosine kinase in regulating the assembly of vascular endothelium. 
Nature 376(6535):66-70. 

17. Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, 
Schuh AC 1995 Failure of blood-island formation and vasculogenesis in Flk-1-
deficient mice. Nature 376(6535):62-6. 

18. Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, 
Galloway AC, Rifkin DB, Mignatti P 1998 Fibroblast growth factor-2 (FGF-2) 
induces vascular endothelial growth factor (VEGF) expression in the endothelial 
cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. 
J Cell Biol 141(7):1659-73. 



www.manaraa.com

 142

19. Katoh Y, Katoh M 2005 Comparative genomics on FGF7, FGF10, FGF22 
orthologs, and identification of fgf25. Int J Mol Med 16(4):767-70. 

20. Ago H, Kitagawa Y, Fujishima A, Matsuura Y, Katsube Y 1991 Crystal structure 
of basic fibroblast growth factor at 1.6 A resolution. J Biochem (Tokyo) 
110(3):360-3. 

21. Zhang JD, Cousens LS, Barr PJ, Sprang SR 1991 Three-dimensional structure of 
human basic fibroblast growth factor, a structural homolog of interleukin 1 beta. 
Proc Natl Acad Sci U S A 88(8):3446-50. 

22. Miller DL, Ortega S, Bashayan O, Basch R, Basilico C 2000 Compensation by 
fibroblast growth factor 1 (FGF1) does not account for the mild phenotypic 
defects observed in FGF2 null mice. Mol Cell Biol 20(6):2260-8. 

23. Ortega S, Ittmann M, Tsang SH, Ehrlich M, Basilico C 1998 Neuronal defects 
and delayed wound healing in mice lacking fibroblast growth factor 2. Proc Natl 
Acad Sci U S A 95(10):5672-7. 

24. Ozaki H, Okamoto N, Ortega S, Chang M, Ozaki K, Sadda S, Vinores MA, 
Derevjanik N, Zack DJ, Basilico C, Campochiaro PA 1998 Basic fibroblast 
growth factor is neither necessary nor sufficient for the development of retinal 
neovascularization. Am J Pathol 153(3):757-65. 

25. Powers CJ, McLeskey SW, Wellstein A 2000 Fibroblast growth factors, their 
receptors and signaling. Endocr Relat Cancer 7(3):165-97. 

26. Mack CA, Patel SR, Schwarz EA, Zanzonico P, Hahn RT, Ilercil A, Devereux 
RB, Goldsmith SJ, Christian TF, Sanborn TA, Kovesdi I, Hackett N, Isom OW, 
Crystal RG, Rosengart TK 1998 Biologic bypass with the use of adenovirus-
mediated gene transfer of the complementary deoxyribonucleic acid for vascular 
endothelial growth factor 121 improves myocardial perfusion and function in the 
ischemic porcine heart. J Thorac Cardiovasc Surg 115(1):168-76; discussion 176-
7. 

27. Takeshita S, Zheng LP, Brogi E, Kearney M, Pu LQ, Bunting S, Ferrara N, 
Symes JF, Isner JM 1994 Therapeutic angiogenesis. A single intraarterial bolus of 
vascular endothelial growth factor augments revascularization in a rabbit ischemic 
hind limb model. J Clin Invest 93(2):662-70. 



www.manaraa.com

 143

28. Safi J, Jr., DiPaula AF, Jr., Riccioni T, Kajstura J, Ambrosio G, Becker LC, 
Anversa P, Capogrossi MC 1999 Adenovirus-mediated acidic fibroblast growth 
factor gene transfer induces angiogenesis in the nonischemic rabbit heart. 
Microvasc Res 58(3):238-49. 

29. Banai S, Jaklitsch MT, Shou M, Lazarous DF, Scheinowitz M, Biro S, Epstein 
SE, Unger EF 1994 Angiogenic-induced enhancement of collateral blood flow to 
ischemic myocardium by vascular endothelial growth factor in dogs. Circulation 
89(5):2183-9. 

30. Unger EF, Banai S, Shou M, Lazarous DF, Jaklitsch MT, Scheinowitz M, Correa 
R, Klingbeil C, Epstein SE 1994 Basic fibroblast growth factor enhances 
myocardial collateral flow in a canine model. Am J Physiol 266(4 Pt 2):H1588-
95. 

31. Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ, Shah 
PK, Willerson JT, Benza RL, Berman DS, Gibson CM, Bajamonde A, Rundle 
AC, Fine J, McCluskey ER 2003 The VIVA trial: Vascular endothelial growth 
factor in Ischemia for Vascular Angiogenesis. Circulation 107(10):1359-65. 

32. Rajagopalan S, Mohler ER, 3rd, Lederman RJ, Mendelsohn FO, Saucedo JF, 
Goldman CK, Blebea J, Macko J, Kessler PD, Rasmussen HS, Annex BH 2003 
Regional angiogenesis with vascular endothelial growth factor in peripheral 
arterial disease: a phase II randomized, double-blind, controlled study of 
adenoviral delivery of vascular endothelial growth factor 121 in patients with 
disabling intermittent claudication. Circulation 108(16):1933-8. 

33. Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H, Udelson 
JE, Gervino EV, Pike M, Whitehouse MJ, Moon T, Chronos NA 2002 
Pharmacological treatment of coronary artery disease with recombinant fibroblast 
growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 
105(7):788-93. 

34. Lederman RJ, Mendelsohn FO, Anderson RD, Saucedo JF, Tenaglia AN, 
Hermiller JB, Hillegass WB, Rocha-Singh K, Moon TE, Whitehouse MJ, Annex 
BH 2002 Therapeutic angiogenesis with recombinant fibroblast growth factor-2 
for intermittent claudication (the TRAFFIC study): a randomised trial. Lancet 
359(9323):2053-8. 

35. Serini G, Valdembri D, Bussolino F 2006 Integrins and angiogenesis: a sticky 
business. Exp Cell Res 312(5):651-8. 



www.manaraa.com

 144

36. Davis GE, Senger DR 2005 Endothelial extracellular matrix: biosynthesis, 
remodeling, and functions during vascular morphogenesis and neovessel 
stabilization. Circ Res 97(11):1093-107. 

37. Friedlander M, Brooks PC, Shaffer RW, Kincaid CM, Varner JA, Cheresh DA 
1995 Definition of two angiogenic pathways by distinct alpha v integrins. Science 
270(5241):1500-2. 

38. Senger DR, Claffey KP, Benes JE, Perruzzi CA, Sergiou AP, Detmar M 1997 
Angiogenesis promoted by vascular endothelial growth factor: regulation through 
alpha1beta1 and alpha2beta1 integrins. Proc Natl Acad Sci U S A 94(25):13612-
7. 

39. Wijelath ES, Murray J, Rahman S, Patel Y, Ishida A, Strand K, Aziz S, Cardona 
C, Hammond WP, Savidge GF, Rafii S, Sobel M 2002 Novel vascular endothelial 
growth factor binding domains of fibronectin enhance vascular endothelial growth 
factor biological activity. Circ Res 91(1):25-31. 

40. Schaper J, Konig R, Franz D, Schaper W 1976 The endothelial surface of growing 
coronary collateral arteries. Intimal margination and diapedesis of monocytes. A 
combined SEM and TEM study. Virchows Arch A Pathol Anat Histol 
370(3):193-205. 

41. Polverini PJ, Cotran PS, Gimbrone MA, Jr., Unanue ER 1977 Activated 
macrophages induce vascular proliferation. Nature 269(5631):804-6. 

42. Heil M, Ziegelhoeffer T, Pipp F, Kostin S, Martin S, Clauss M, Schaper W 2002 
Blood monocyte concentration is critical for enhancement of collateral artery 
growth. Am J Physiol Heart Circ Physiol 283(6):H2411-9. 

43. Bergmann CE, Hoefer IE, Meder B, Roth H, van Royen N, Breit SM, Jost MM, 
Aharinejad S, Hartmann S, Buschmann IR 2006 Arteriogenesis depends on 
circulating monocytes and macrophage accumulation and is severely depressed in 
op/op mice J Leukoc Biol, vol. 80, pp 59-65. 

44. Goede V, Brogelli L, Ziche M, Augustin HG 1999 Induction of inflammatory 
angiogenesis by monocyte chemoattractant protein-1. Int J Cancer 82(5):765-70. 



www.manaraa.com

 145

45. Marumo T, Schini-Kerth VB, Busse R 1999 Vascular endothelial growth factor 
activates nuclear factor-kappaB and induces monocyte chemoattractant protein-1 
in bovine retinal endothelial cells. Diabetes 48(5):1131-7. 

46. Wempe F, Lindner V, Augustin HG 1997 Basic fibroblast growth factor (bFGF) 
regulates the expression of the CC chemokine monocyte chemoattractant protein-
1 (MCP-1) in autocrine-activated endothelial cells. Arterioscler Thromb Vasc 
Biol 17(11):2471-8. 

47. Hoefer IE, van Royen N, Buschmann IR, Piek JJ, Schaper W 2001 Time course of 
arteriogenesis following femoral artery occlusion in the rabbit. Cardiovasc Res 
49(3):609-17. 

48. Voskuil M, van Royen N, Hoefer IE, Seidler R, Guth BD, Bode C, Schaper W, 
Piek JJ, Buschmann IR 2003 Modulation of collateral artery growth in a porcine 
hindlimb ligation model using MCP-1. Am J Physiol Heart Circ Physiol 
284(4):H1422-8. 

49. Ito WD, Arras M, Winkler B, Scholz D, Schaper J, Schaper W 1997 Monocyte 
chemotactic protein-1 increases collateral and peripheral conductance after 
femoral artery occlusion. Circ Res 80(6):829-37. 

50. Muhs A, Lenter MC, Seidler RW, Zweigerdt R, Kirchengast M, Weser R, 
Ruediger M, Guth B 2004 Nonviral monocyte chemoattractant protein-1 gene 
transfer improves arteriogenesis after femoral artery occlusion. Gene Ther 
11(23):1685-93. 

51. Scholz D, Ito W, Fleming I, Deindl E, Sauer A, Wiesnet M, Busse R, Schaper J, 
Schaper W 2000 Ultrastructure and molecular histology of rabbit hind-limb 
collateral artery growth (arteriogenesis). Virchows Arch 436(3):257-70. 

52. van Royen N, Hoefer I, Buschmann I, Kostin S, Voskuil M, Bode C, Schaper W, 
Piek JJ 2003 Effects of local MCP-1 protein therapy on the development of the 
collateral circulation and atherosclerosis in Watanabe hyperlipidemic rabbits. 
Cardiovasc Res 57(1):178-85. 

53. van Royen N, Hoefer I, Bottinger M, Hua J, Grundmann S, Voskuil M, Bode C, 
Schaper W, Buschmann I, Piek JJ 2003 Local monocyte chemoattractant protein-
1 therapy increases collateral artery formation in apolipoprotein E-deficient mice 
but induces systemic monocytic CD11b expression, neointimal formation, and 
plaque progression. Circ Res 92(2):218-25. 



www.manaraa.com

 146

54. Heil M, Ziegelhoeffer T, Wagner S, Fernandez B, Helisch A, Martin S, Tribulova 
S, Kuziel WA, Bachmann G, Schaper W 2004 Collateral artery growth 
(arteriogenesis) after experimental arterial occlusion is impaired in mice lacking 
CC-chemokine receptor-2. Circ Res 94(5):671-7. 

55. Voskuil M, Hoefer IE, van Royen N, Hua J, de Graaf S, Bode C, Buschmann IR, 
Piek JJ 2004 Abnormal monocyte recruitment and collateral artery formation in 
monocyte chemoattractant protein-1 deficient mice. Vasc Med 9(4):287-92. 

56. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler 
B, Schatteman G, Isner JM 1997 Isolation of putative progenitor endothelial cells 
for angiogenesis. Science 275(5302):964-7. 

57. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle 
R, Sauvage LR, Moore MA, Storb RF, Hammond WP 1998 Evidence for 
circulating bone marrow-derived endothelial cells. Blood 92(2):362-7. 

58. Urbich C, Dimmeler S 2004 Endothelial progenitor cells: characterization and 
role in vascular biology. Circ Res 95(4):343-53. 

59. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, 
Isner JM, Asahara T 2000 Transplantation of ex vivo expanded endothelial 
progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 
97(7):3422-7. 

60. Kamihata H, Matsubara H, Nishiue T, Fujiyama S, Tsutsumi Y, Ozono R, Masaki 
H, Mori Y, Iba O, Tateishi E, Kosaki A, Shintani S, Murohara T, Imaizumi T, 
Iwasaka T 2001 Implantation of bone marrow mononuclear cells into ischemic 
myocardium enhances collateral perfusion and regional function via side supply 
of angioblasts, angiogenic ligands, and cytokines. Circulation 104(9):1046-52. 

61. Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H, Silver 
M, Ma H, Kearney M, Isner JM, Asahara T 2001 Therapeutic potential of ex vivo 
expanded endothelial progenitor cells for myocardial ischemia. Circulation 
103(5):634-7. 

62. Kocher AA, Schuster MD, Szabolcs MJ, Takuma S, Burkhoff D, Wang J, Homma 
S, Edwards NM, Itescu S 2001 Neovascularization of ischemic myocardium by 
human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, 
reduces remodeling and improves cardiac function. Nat Med 7(4):430-6. 



www.manaraa.com

 147

63. Hess DC, Hill WD, Martin-Studdard A, Carroll J, Brailer J, Carothers J 2002 
Bone marrow as a source of endothelial cells and NeuN-expressing cells After 
stroke. Stroke 33(5):1362-8. 

64. Zhang ZG, Zhang L, Jiang Q, Chopp M 2002 Bone marrow-derived endothelial 
progenitor cells participate in cerebral neovascularization after focal cerebral 
ischemia in the adult mouse. Circ Res 90(3):284-8. 

65. Lyden D, Hattori K, Dias S, Costa C, Blaikie P, Butros L, Chadburn A, Heissig B, 
Marks W, Witte L, Wu Y, Hicklin D, Zhu Z, Hackett NR, Crystal RG, Moore 
MA, Hajjar KA, Manova K, Benezra R, Rafii S 2001 Impaired recruitment of 
bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor 
angiogenesis and growth. Nat Med 7(11):1194-201. 

66. Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, 
Schaper W 2004 Bone marrow-derived cells do not incorporate into the adult 
growing vasculature. Circ Res 94(2):230-8. 

67. Khmelewski E, Becker A, Meinertz T, Ito WD 2004 Tissue resident cells play a 
dominant role in arteriogenesis and concomitant macrophage accumulation. Circ 
Res 95(6):E56-64. 

68. O'Neill TJt, Wamhoff BR, Owens GK, Skalak TC 2005 Mobilization of bone 
marrow-derived cells enhances the angiogenic response to hypoxia without 
transdifferentiation into endothelial cells. Circ Res 97(10):1027-35. 

69. Machein MR, Renninger S, de Lima-Hahn E, Plate KH 2003 Minor contribution 
of bone marrow-derived endothelial progenitors to the vascularization of murine 
gliomas. Brain Pathol 13(4):582-97. 

70. Larrivee B, Niessen K, Pollet I, Corbel SY, Long M, Rossi FM, Olive PL, Karsan 
A 2005 Minimal contribution of marrow-derived endothelial precursors to tumor 
vasculature. J Immunol 175(5):2890-9. 

71. Gothert JR, Gustin SE, van Eekelen JA, Schmidt U, Hall MA, Jane SM, Green 
AR, Gottgens B, Izon DJ, Begley CG 2004 Genetically tagging endothelial cells 
in vivo: bone marrow-derived cells do not contribute to tumor endothelium. Blood 
104(6):1769-77. 



www.manaraa.com

 148

72. Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel 
T 2003 Circulating endothelial progenitor cells, vascular function, and 
cardiovascular risk. N Engl J Med 348(7):593-600. 

73. Vasa M, Fichtlscherer S, Aicher A, Adler K, Urbich C, Martin H, Zeiher AM, 
Dimmeler S 2001 Number and migratory activity of circulating endothelial 
progenitor cells inversely correlate with risk factors for coronary artery disease. 
Circ Res 89(1):E1-7. 

74. Werner N, Kosiol S, Schiegl T, Ahlers P, Walenta K, Link A, Bohm M, Nickenig 
G 2005 Circulating endothelial progenitor cells and cardiovascular outcomes. N 
Engl J Med 353(10):999-1007. 

75. Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, de Boer 
HC, Verhaar MC, Braam B, Rabelink TJ, van Zonneveld AJ 2004 Endothelial 
progenitor cell dysfunction: a novel concept in the pathogenesis of vascular 
complications of type 1 diabetes. Diabetes 53(1):195-9. 

76. Tepper OM, Galiano RD, Capla JM, Kalka C, Gagne PJ, Jacobowitz GR, Levine 
JP, Gurtner GC 2002 Human endothelial progenitor cells from type II diabetics 
exhibit impaired proliferation, adhesion, and incorporation into vascular 
structures. Circulation 106(22):2781-6. 

77. Kondo T, Hayashi M, Takeshita K, Numaguchi Y, Kobayashi K, Iino S, Inden Y, 
Murohara T 2004 Smoking cessation rapidly increases circulating progenitor cells 
in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol 
24(8):1442-7. 

78. Chen JZ, Zhang FR, Tao QM, Wang XX, Zhu JH 2004 Number and activity of 
endothelial progenitor cells from peripheral blood in patients with 
hypercholesterolaemia. Clin Sci (Lond) 107(3):273-80. 

79. Llevadot J, Murasawa S, Kureishi Y, Uchida S, Masuda H, Kawamoto A, Walsh 
K, Isner JM, Asahara T 2001 HMG-CoA reductase inhibitor mobilizes bone 
marrow--derived endothelial progenitor cells. J Clin Invest 108(3):399-405. 

80. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jurgens K, Miche E, Bohm 
M, Nickenig G 2004 Physical training increases endothelial progenitor cells, 
inhibits neointima formation, and enhances angiogenesis. Circulation 109(2):220-
6. 



www.manaraa.com

 149

81. Schachinger V, Assmus B, Britten MB, Honold J, Lehmann R, Teupe C, 
Abolmaali ND, Vogl TJ, Hofmann WK, Martin H, Dimmeler S, Zeiher AM 2004 
Transplantation of progenitor cells and regeneration enhancement in acute 
myocardial infarction: final one-year results of the TOPCARE-AMI Trial. J Am 
Coll Cardiol 44(8):1690-9. 

82. Wollert KC, Meyer GP, Lotz J, Ringes-Lichtenberg S, Lippolt P, Breidenbach C, 
Fichtner S, Korte T, Hornig B, Messinger D, Arseniev L, Hertenstein B, Ganser 
A, Drexler H 2004 Intracoronary autologous bone-marrow cell transfer after 
myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 
364(9429):141-8. 

83. Folkman J 1971 Tumor angiogenesis: therapeutic implications. N Engl J Med 
285(21):1182-6. 

84. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N 1993 
Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses 
tumour growth in vivo. Nature 362(6423):841-4. 

85. Ferrara N, Hillan KJ, Gerber HP, Novotny W 2004 Discovery and development 
of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug 
Discov 3(5):391-400. 

86. Jain RK, Duda DG, Clark JW, Loeffler JS 2006 Lessons from phase III clinical 
trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3(1):24-40. 

87. Ferrara N 2004 Vascular endothelial growth factor: basic science and clinical 
progress. Endocr Rev 25(4):581-611. 

88. Ng EW, Shima DT, Calias P, Cunningham ET, Jr., Guyer DR, Adamis AP 2006 
Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat Rev 
Drug Discov 5(2):123-32. 

89. Tolentino MJ, Brucker AJ, Fosnot J, Ying GS, Wu IH, Malik G, Wan S, Reich SJ 
2004 Intravitreal injection of vascular endothelial growth factor small interfering 
RNA inhibits growth and leakage in a nonhuman primate, laser-induced model of 
choroidal neovascularization. Retina 24(4):660. 

90. Shen J, Samul R, Silva RL, Akiyama H, Liu H, Saishin Y, Hackett SF, Zinnen S, 
Kossen K, Fosnaugh K, Vargeese C, Gomez A, Bouhana K, Aitchison R, Pavco 



www.manaraa.com

 150

P, Campochiaro PA 2006 Suppression of ocular neovascularization with siRNA 
targeting VEGF receptor 1. Gene Ther 13(3):225-34. 

91. Kurup A, Lin CW, Murry DJ, Dobrolecki L, Estes D, Yiannoutsos CT, Mariano 
L, Sidor C, Hickey R, Hanna N 2006 Recombinant human angiostatin 
(rhAngiostatin) in combination with paclitaxel and carboplatin in patients with 
advanced non-small-cell lung cancer: a phase II study from Indiana University. 
Ann Oncol 17(1):97-103. 

92. Arvelo F, Cotte C 2006 [Metalloproteinases in tumor progression. Review]. 
Invest Clin 47(2):185-205. 

93. Cai W, Chen X 2006 Anti-angiogenic cancer therapy based on integrin 
alphavbeta3 antagonism. Anticancer Agents Med Chem 6(5):407-28. 

94. Berger AC, Wang XQ, Zalatoris A, Cenna J, Watson JC 2004 A murine model of 
ex vivo angiogenesis using aortic disks grown in fibrin clot. Microvasc Res 
68(3):179-87. 

95. Nicosia RF, Ottinetti A 1990 Growth of microvessels in serum-free matrix culture 
of rat aorta. A quantitative assay of angiogenesis in vitro. Lab Invest 63(1):115-
22. 

96. Masson VV, Devy L, Grignet-Debrus C, Bernt S, Bajou K, Blacher S, Roland G, 
Chang Y, Fong T, Carmeliet P, Foidart JM, Noel A 2002 Mouse Aortic Ring 
Assay: A New Approach of the Molecular Genetics of Angiogenesis. Biol Proced 
Online 4:24-31. 

97. Auerbach R, Kubai L, Knighton D, Folkman J 1974 A simple procedure for the 
long-term cultivation of chicken embryos. Dev Biol 41(2):391-4. 

98. Nguyen M, Shing Y, Folkman J 1994 Quantitation of angiogenesis and 
antiangiogenesis in the chick embryo chorioallantoic membrane. Microvasc Res 
47(1):31-40. 

99. Passaniti A, Taylor RM, Pili R, Guo Y, Long PV, Haney JA, Pauly RR, Grant 
DS, Martin GR 1992 A simple, quantitative method for assessing angiogenesis 
and antiangiogenic agents using reconstituted basement membrane, heparin, and 
fibroblast growth factor. Lab Invest 67(4):519-28. 



www.manaraa.com

 151

100. Andrade SP, Fan TP, Lewis GP 1987 Quantitative in-vivo studies on angiogenesis 
in a rat sponge model. Br J Exp Pathol 68(6):755-66. 

101. Kowalski J, Kwan HH, Prionas SD, Allison AC, Fajardo LF 1992 
Characterization and applications of the disc angiogenesis system. Exp Mol 
Pathol 56(1):1-19. 

102. Fajardo LF, Kowalski J, Kwan HH, Prionas SD, Allison AC 1988 The disc 
angiogenesis system. Lab Invest 58(6):718-24. 

103. Kenyon BM, Voest EE, Chen CC, Flynn E, Folkman J, D'Amato RJ 1996 A 
model of angiogenesis in the mouse cornea. Invest Ophthalmol Vis Sci 
37(8):1625-32. 

104. Gimbrone MA, Jr., Cotran RS, Leapman SB, Folkman J 1974 Tumor growth and 
neovascularization: an experimental model using the rabbit cornea. J Natl Cancer 
Inst 52(2):413-27. 

105. Muthukkaruppan V, Auerbach R 1979 Angiogenesis in the mouse cornea. Science 
205(4413):1416-8. 

106. Gimbrone MA, Jr., Leapman SB, Cotran RS, Folkman J 1972 Tumor dormancy in 
vivo by prevention of neovascularization. J Exp Med 136(2):261-76. 

107. Couffinhal T, Silver M, Zheng LP, Kearney M, Witzenbichler B, Isner JM 1998 
Mouse model of angiogenesis. Am J Pathol 152(6):1667-79. 

108. Hendricks DL, Pevec WC, Shestak KC, Rosenthal MC, Webster MW, Steed DL 
1990 A model of persistent partial hindlimb ischemia in the rabbit. J Surg Res 
49(5):453-7. 

109. Pu LQ, Jackson S, Lachapelle KJ, Arekat Z, Graham AM, Lisbona R, Brassard R, 
Carpenter S, Symes JF 1994 A persistent hindlimb ischemia model in the rabbit. J 
Invest Surg 7(1):49-60. 

110. Conrad MC 1977 Effects of therapy on maximal walking time following femoral 
ligation in the rat. Circ Res 41(6):775-8. 



www.manaraa.com

 152

111. Silvestre JS, Tamarat R, Ebrahimian TG, Le-Roux A, Clergue M, Emmanuel F, 
Duriez M, Schwartz B, Branellec D, Levy BI 2003 Vascular endothelial growth 
factor-B promotes in vivo angiogenesis. Circ Res 93(2):114-23. 

112. Abe M, Sata M, Nishimatsu H, Nagata D, Suzuki E, Terauchi Y, Kadowaki T, 
Minamino N, Kangawa K, Matsuo H, Hirata Y, Nagai R 2003 Adrenomedullin 
augments collateral development in response to acute ischemia. Biochem Biophys 
Res Commun 306(1):10-5. 

113. Amano K, Matsubara H, Iba O, Okigaki M, Fujiyama S, Imada T, Kojima H, 
Nozawa Y, Kawashima S, Yokoyama M, Iwasaka T 2003 Enhancement of 
ischemia-induced angiogenesis by eNOS overexpression. Hypertension 
41(1):156-62. 

114. Silvestre JS, Tamarat R, Senbonmatsu T, Icchiki T, Ebrahimian T, Iglarz M, 
Besnard S, Duriez M, Inagami T, Levy BI 2002 Antiangiogenic effect of 
angiotensin II type 2 receptor in ischemia-induced angiogenesis in mice hindlimb. 
Circ Res 90(10):1072-9. 

115. Mallat Z, Silvestre JS, Le Ricousse-Roussanne S, Lecomte-Raclet L, Corbaz A, 
Clergue M, Duriez M, Barateau V, Akira S, Tedgui A, Tobelem G, Chvatchko Y, 
Levy BI 2002 Interleukin-18/interleukin-18 binding protein signaling modulates 
ischemia-induced neovascularization in mice hindlimb. Circ Res 91(5):441-8. 

116. Brevetti LS, Paek R, Brady SE, Hoffman JI, Sarkar R, Messina LM 2001 
Exercise-induced hyperemia unmasks regional blood flow deficit in experimental 
hindlimb ischemia. J Surg Res 98(1):21-6. 

117. Kowallik P, Schulz R, Guth BD, Schade A, Paffhausen W, Gross R, Heusch G 
1991 Measurement of regional myocardial blood flow with multiple colored 
microspheres. Circulation 83(3):974-82. 

118. Prinzen FW, Glenny RW 1994 Developments in non-radioactive microsphere 
techniques for blood flow measurement. Cardiovasc Res 28(10):1467-75. 

119. Van Oosterhout MF, Willigers HM, Reneman RS, Prinzen FW 1995 Fluorescent 
microspheres to measure organ perfusion: validation of a simplified sample 
processing technique. Am J Physiol 269(2 Pt 2):H725-33. 



www.manaraa.com

 153

120. Deveci D, Egginton S 1999 Development of the fluorescent microsphere 
technique for quantifying regional blood flow in small mammals. Exp Physiol 
84(4):615-30. 

121. Bentley MD, Ortiz MC, Ritman EL, Romero JC 2002 The use of microcomputed 
tomography to study microvasculature in small rodents. Am J Physiol Regul 
Integr Comp Physiol 282(5):R1267-79. 

122. Garcia-Sanz A, Rodriguez-Barbero A, Bentley MD, Ritman EL, Romero JC 1998 
Three-dimensional microcomputed tomography of renal vasculature in rats. 
Hypertension 31(1 Pt 2):440-4. 

123. Holdsworth DW, Thornton MM 2002 Micro-CT in small animal and specimen 
imaging. Trends Biotechnol 20(8):S34-9. 

124. Jorgensen SM, Demirkaya O, Ritman EL 1998 Three-dimensional imaging of 
vasculature and parenchyma in intact rodent organs with X-ray micro-CT. Am J 
Physiol 275(3 Pt 2):H1103-14. 

125. Ortiz MC, Garcia-Sanz A, Bentley MD, Fortepiani LA, Garcia-Estan J, Ritman 
EL, Romero JC, Juncos LA 2000 Microcomputed tomography of kidneys 
following chronic bile duct ligation. Kidney Int 58(4):1632-40. 

126. Rodriguez-Porcel M, Lerman A, Ritman EL, Wilson SH, Best PJ, Lerman LO 
2000 Altered myocardial microvascular 3D architecture in experimental 
hypercholesterolemia. Circulation 102(17):2028-30. 

127. Simopoulos DN, Gibbons SJ, Malysz J, Szurszewski JH, Farrugia G, Ritman EL, 
Moreland RB, Nehra A 2001 Corporeal structural and vascular micro architecture 
with X-ray micro computerized tomography in normal and diabetic rabbits: 
histopathological correlation. J Urol 165(5):1776-82. 

128. Wilson SH, Herrmann J, Lerman LO, Holmes DR, Jr., Napoli C, Ritman EL, 
Lerman A 2002 Simvastatin preserves the structure of coronary adventitial vasa 
vasorum in experimental hypercholesterolemia independent of lipid lowering. 
Circulation 105(4):415-8. 

129. Maehara N 2003 Experimental microcomputed tomography study of the 3D 
microangioarchitecture of tumors. Eur Radiol 13(7):1559-65. 



www.manaraa.com

 154

130. Duvall CL, Robert Taylor W, Weiss D, Guldberg RE 2004 Quantitative 
microcomputed tomography analysis of collateral vessel development after 
ischemic injury. Am J Physiol Heart Circ Physiol 287(1):H302-10. 

131. Hounsfield GN 1973 Computerized transverse axial scanning (tomography). 1. 
Description of system. Br J Radiol 46(552):1016-22. 

132. Hounsfield GN 1980 Nobel lecture, 8 December 1979. Computed medical 
imaging. J Radiol 61(6-7):459-68. 

133. Feldkamp LA, Goldstein SA, Parfitt AM, Jesion G, Kleerekoper M 1989 The 
direct examination of three-dimensional bone architecture in vitro by computed 
tomography. J Bone Miner Res 4(1):3-11. 

134. Feldkamp LA, C. DL 1984 Practical cone-beam algorithm. J Opt Soc Am 1:612-
619. 

135. Hildebrand T, Ruegsegger P 1997 A new method for the model-independent 
assessment of thickness in three-dimensional images. J Microsc 185:67-75. 

136. Hildebrand T, Laib A, Muller R, Dequeker J, Ruegsegger P 1999 Direct three-
dimensional morphometric analysis of human cancellous bone: microstructural 
data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res 14(7):1167-
74. 

137. Odgaard A, Gundersen HJ 1993 Quantification of connectivity in cancellous 
bone, with special emphasis on 3-D reconstructions. Bone 14(2):173-82. 

138. Guldberg RE, Ballock RT, Boyan BD, Duvall CL, Lin AS, Nagaraja S, Oest M, 
Phillips J, Porter BD, Robertson G, Taylor WR 2003 Analyzing bone, blood 
vessels, and biomaterials with microcomputed tomography. IEEE Eng Med Biol 
Mag 22(5):77-83. 

139. Guldberg RE, Lin AS, Coleman R, Robertson G, Duvall C 2004 Microcomputed 
tomography imaging of skeletal development and growth. Birth Defects Res C 
Embryo Today 72(3):250-9. 

140. American Society for Metals., ASM Handbook Committee. 1989 Nondestructive 
evaluation and quality control. ASM International, Metals Park, Ohio, pp xi, 795. 



www.manaraa.com

 155

141. Ferguson C, Alpern E, Miclau T, Helms JA 1999 Does adult fracture repair 
recapitulate embryonic skeletal formation? Mech Dev 87(1-2):57-66. 

142. McKibbin B 1978 The biology of fracture healing in long bones. J Bone Joint 
Surg Br 60-B(2):150-62. 

143. Le AX, Miclau T, Hu D, Helms JA 2001 Molecular aspects of healing in 
stabilized and non-stabilized fractures. J Orthop Res 19(1):78-84. 

144. Einhorn TA 1998 The cell and molecular biology of fracture healing. Clin Orthop 
(355 Suppl):S7-21. 

145. Einhorn TA, Majeska RJ, Rush EB, Levine PM, Horowitz MC 1995 The 
expression of cytokine activity by fracture callus. J Bone Miner Res 10(8):1272-
81. 

146. Kon T, Cho TJ, Aizawa T, Yamazaki M, Nooh N, Graves D, Gerstenfeld LC, 
Einhorn TA 2001 Expression of osteoprotegerin, receptor activator of NF-kappaB 
ligand (osteoprotegerin ligand) and related proinflammatory cytokines during 
fracture healing. J Bone Miner Res 16(6):1004-14. 

147. De Biase P, Capanna R 2005 Clinical applications of BMPs. Injury 36 Suppl 
3:S43-6. 

148. Ding RK, Wang WC, Ni JD 2001 [Experimental study of bovine bone 
morphogenetic protein combined with sintered bone in the treatment of bone 
defects]. Hunan Yi Ke Da Xue Xue Bao 26(6):537-9. 

149. Deckers MM, van Bezooijen RL, van der Horst G, Hoogendam J, van Der Bent 
C, Papapoulos SE, Lowik CW 2002 Bone morphogenetic proteins stimulate 
angiogenesis through osteoblast-derived vascular endothelial growth factor A. 
Endocrinology 143(4):1545-53. 

150. Hoffmann A, Weich HA, Gross G, Hillmann G 2001 Perspectives in the 
biological function, the technical and therapeutic application of bone 
morphogenetic proteins. Appl Microbiol Biotechnol 57(3):294-308. 

151. Street J, Bao M, deGuzman L, Bunting S, Peale FV, Jr., Ferrara N, Steinmetz H, 
Hoeffel J, Cleland JL, Daugherty A, van Bruggen N, Redmond HP, Carano RA, 



www.manaraa.com

 156

Filvaroff EH 2002 Vascular endothelial growth factor stimulates bone repair by 
promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A 
99(15):9656-61. 

152. Hausman MR, Schaffler MB, Majeska RJ 2001 Prevention of fracture healing in 
rats by an inhibitor of angiogenesis. Bone 29(6):560-4. 

153. Colnot C, Thompson Z, Miclau T, Werb Z, Helms JA 2003 Altered fracture repair 
in the absence of MMP9. Development 130(17):4123-33. 

154. Alford AI, Hankenson KD 2006 Matricellular proteins: extracellular modulators 
of bone development, remodeling, and regeneration. Bone 38(6):749-57. 

155. Denhardt DT, Noda M, O'Regan AW, Pavlin D, Berman JS 2001 Osteopontin as 
a means to cope with environmental insults: regulation of inflammation, tissue 
remodeling, and cell survival. J Clin Invest 107(9):1055-61. 

156. Bornstein P 2000 Matricellular proteins: an overview. Matrix Biol 19(7):555-6. 

157. Liaw L, Skinner MP, Raines EW, Ross R, Cheresh DA, Schwartz SM, Giachelli 
CM 1995 The adhesive and migratory effects of osteopontin are mediated via 
distinct cell surface integrins. Role of alpha v beta 3 in smooth muscle cell 
migration to osteopontin in vitro. J Clin Invest 95(2):713-24. 

158. Bayless KJ, Meininger GA, Scholtz JM, Davis GE 1998 Osteopontin is a ligand 
for the alpha4beta1 integrin. J Cell Sci 111 ( Pt 9):1165-74. 

159. Barry ST, Ludbrook SB, Murrison E, Horgan CM 2000 A regulated interaction 
between alpha5beta1 integrin and osteopontin. Biochem Biophys Res Commun 
267(3):764-9. 

160. Denda S, Reichardt LF, Muller U 1998 Identification of osteopontin as a novel 
ligand for the integrin alpha8 beta1 and potential roles for this integrin-ligand 
interaction in kidney morphogenesis. Mol Biol Cell 9(6):1425-35. 

161. Smith LL, Cheung HK, Ling LE, Chen J, Sheppard D, Pytela R, Giachelli CM 
1996 Osteopontin N-terminal domain contains a cryptic adhesive sequence 
recognized by alpha9beta1 integrin. J Biol Chem 271(45):28485-91. 



www.manaraa.com

 157

162. Senger DR, Perruzzi CA, Papadopoulos-Sergiou A, Van de Water L 1994 
Adhesive properties of osteopontin: regulation by a naturally occurring thrombin-
cleavage in close proximity to the GRGDS cell-binding domain. Mol Biol Cell 
5(5):565-74. 

163. Helluin O, Chan C, Vilaire G, Mousa S, DeGrado WF, Bennett JS 2000 The 
activation state of alphavbeta 3 regulates platelet and lymphocyte adhesion to 
intact and thrombin-cleaved osteopontin. J Biol Chem 275(24):18337-43. 

164. Goodison S, Urquidi V, Tarin D 1999 CD44 cell adhesion molecules. Mol Pathol 
52(4):189-96. 

165. Weber GF, Ashkar S, Glimcher MJ, Cantor H 1996 Receptor-ligand interaction 
between CD44 and osteopontin (Eta-1). Science 271(5248):509-12. 

166. Katagiri YU, Sleeman J, Fujii H, Herrlich P, Hotta H, Tanaka K, Chikuma S, 
Yagita H, Okumura K, Murakami M, Saiki I, Chambers AF, Uede T 1999 CD44 
variants but not CD44s cooperate with beta1-containing integrins to permit cells 
to bind to osteopontin independently of arginine-glycine-aspartic acid, thereby 
stimulating cell motility and chemotaxis. Cancer Res 59(1):219-26. 

167. Zohar R, Suzuki N, Suzuki K, Arora P, Glogauer M, McCulloch CA, Sodek J 
2000 Intracellular osteopontin is an integral component of the CD44-ERM 
complex involved in cell migration. J Cell Physiol 184(1):118-30. 

168. Senger DR, Wirth DF, Hynes RO 1979 Transformed mammalian cells secrete 
specific proteins and phosphoproteins. Cell 16(4):885-93. 

169. Rittling SR, Chambers AF 2004 Role of osteopontin in tumour progression. Br J 
Cancer 90(10):1877-81. 

170. Liaw L, Birk DE, Ballas CB, Whitsitt JS, Davidson JM, Hogan BL 1998 Altered 
wound healing in mice lacking a functional osteopontin gene (spp1). J Clin Invest 
101(7):1468-78. 

171. Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grunewald E, Cheng T, 
Dombkowski D, Calvi LM, Rittling SR, Scadden DT 2005 Osteopontin is a 
hematopoietic stem cell niche component that negatively regulates stem cell pool 
size. J Exp Med 201(11):1781-91. 



www.manaraa.com

 158

172. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, 
Bertoncello I, Bendall LJ, Simmons PJ, Haylock DN 2005 Osteopontin, a key 
component of the hematopoietic stem cell niche and regulator of primitive 
hematopoietic progenitor cells. Blood 106(4):1232-9. 

173. Myers DL, Harmon KJ, Lindner V, Liaw L 2003 Alterations of arterial 
physiology in osteopontin-null mice. Arterioscler Thromb Vasc Biol 23(6):1021-
8. 

174. O'Brien ER, Garvin MR, Stewart DK, Hinohara T, Simpson JB, Schwartz SM, 
Giachelli CM 1994 Osteopontin is synthesized by macrophage, smooth muscle, 
and endothelial cells in primary and restenotic human coronary atherosclerotic 
plaques. Arterioscler Thromb 14(10):1648-56. 

175. Scatena M, Almeida M, Chaisson ML, Fausto N, Nicosia RF, Giachelli CM 1998 
NF-kappaB mediates alphavbeta3 integrin-induced endothelial cell survival. J 
Cell Biol 141(4):1083-93. 

176. Senger DR, Ledbetter SR, Claffey KP, Papadopoulos-Sergiou A, Peruzzi CA, 
Detmar M 1996 Stimulation of endothelial cell migration by vascular 
permeability factor/vascular endothelial growth factor through cooperative 
mechanisms involving the alphavbeta3 integrin, osteopontin, and thrombin. Am J 
Pathol 149(1):293-305. 

177. Leali D, Dell'Era P, Stabile H, Sennino B, Chambers AF, Naldini A, Sozzani S, 
Nico B, Ribatti D, Presta M 2003 Osteopontin (Eta-1) and fibroblast growth 
factor-2 cross-talk in angiogenesis. J Immunol 171(2):1085-93. 

178. Giachelli CM, Lombardi D, Johnson RJ, Murry CE, Almeida M 1998 Evidence 
for a role of osteopontin in macrophage infiltration in response to pathological 
stimuli in vivo. Am J Pathol 152(2):353-8. 

179. Liaw L, Almeida M, Hart CE, Schwartz SM, Giachelli CM 1994 Osteopontin 
promotes vascular cell adhesion and spreading and is chemotactic for smooth 
muscle cells in vitro. Circ Res 74(2):214-24. 

180. Yue TL, McKenna PJ, Ohlstein EH, Farach-Carson MC, Butler WT, Johanson K, 
McDevitt P, Feuerstein GZ, Stadel JM 1994 Osteopontin-stimulated vascular 
smooth muscle cell migration is mediated by beta 3 integrin. Exp Cell Res 
214(2):459-64. 



www.manaraa.com

 159

181. Shijubo N, Uede T, Kon S, Maeda M, Segawa T, Imada A, Hirasawa M, Abe S 
1999 Vascular endothelial growth factor and osteopontin in stage I lung 
adenocarcinoma. Am J Respir Crit Care Med 160(4):1269-73. 

182. Jin Y, Kuroda N, Kakiuchi S, Yamasaki Y, Miyazaki E, Hayashi Y, Toi M, 
Naruse K, Hiroi M, Enzan H 2000 Bronchial granular cell tumor with osteopontin 
and osteonectin expression: a case report. Pathol Int 50(5):421-6. 

183. Euer N, Schwirzke M, Evtimova V, Burtscher H, Jarsch M, Tarin D, Weidle UH 
2002 Identification of genes associated with metastasis of mammary carcinoma in 
metastatic versus non-metastatic cell lines. Anticancer Res 22(2A):733-40. 

184. Khanna C, Prehn J, Yeung C, Caylor J, Tsokos M, Helman L 2000 An orthotopic 
model of murine osteosarcoma with clonally related variants differing in 
pulmonary metastatic potential. Clin Exp Metastasis 18(3):261-71. 

185. Takahashi F, Akutagawa S, Fukumoto H, Tsukiyama S, Ohe Y, Takahashi K, 
Fukuchi Y, Saijo N, Nishio K 2002 Osteopontin induces angiogenesis of murine 
neuroblastoma cells in mice. Int J Cancer 98(5):707-12. 

186. Nakase T, Takaoka K, Hirakawa K, Hirota S, Takemura T, Onoue H, 
Takebayashi K, Kitamura Y, Nomura S 1994 Alterations in the expression of 
osteonectin, osteopontin and osteocalcin mRNAs during the development of 
skeletal tissues in vivo. Bone Miner 26(2):109-22. 

187. Rittling SR, Matsumoto HN, McKee MD, Nanci A, An XR, Novick KE, 
Kowalski AJ, Noda M, Denhardt DT 1998 Mice lacking osteopontin show normal 
development and bone structure but display altered osteoclast formation in vitro. J 
Bone Miner Res 13(7):1101-11. 

188. Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA 1996 
Nucleation and inhibition of hydroxyapatite formation by mineralized tissue 
proteins. Biochem J 317 ( Pt 1):59-64. 

189. Boskey AL, Maresca M, Ullrich W, Doty SB, Butler WT, Prince CW 1993 
Osteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite 
formation and growth in a gelatin-gel. Bone Miner 22(2):147-59. 



www.manaraa.com

 160

190. Boskey AL, Spevak L, Paschalis E, Doty SB, McKee MD 2002 Osteopontin 
deficiency increases mineral content and mineral crystallinity in mouse bone. 
Calcif Tissue Int 71(2):145-54. 

191. Chellaiah MA, Kizer N, Biswas R, Alvarez U, Strauss-Schoenberger J, Rifas L, 
Rittling SR, Denhardt DT, Hruska KA 2003 Osteopontin Deficiency Produces 
Osteoclast Dysfunction Due to Reduced CD44 Surface Expression. Mol Biol Cell 
14(1):173-89. 

192. Suzuki K, Zhu B, Rittling SR, Denhardt DT, Goldberg HA, McCulloch CA, 
Sodek J 2002 Colocalization of intracellular osteopontin with CD44 is associated 
with migration, cell fusion, and resorption in osteoclasts. J Bone Miner Res 
17(8):1486-97. 

193. Ishijima M, Rittling SR, Yamashita T, Tsuji K, Kurosawa H, Nifuji A, Denhardt 
DT, Noda M 2001 Enhancement of osteoclastic bone resorption and suppression 
of osteoblastic bone formation in response to reduced mechanical stress do not 
occur in the absence of osteopontin. J Exp Med 193(3):399-404. 

194. Yoshitake H, Rittling SR, Denhardt DT, Noda M 1999 Osteopontin-deficient 
mice are resistant to ovariectomy-induced bone resorption. Proc Natl Acad Sci U 
S A 96(14):8156-60. 

195. Ihara H, Denhardt DT, Furuya K, Yamashita T, Muguruma Y, Tsuji K, Hruska 
KA, Higashio K, Enomoto S, Nifuji A, Rittling SR, Noda M 2001 Parathyroid 
hormone-induced bone resorption does not occur in the absence of osteopontin. J 
Biol Chem 276(16):13065-71. 

196. Koyama Y, Rittling SR, Tsuji K, Hino K, Salincarnboriboon R, Yano T, Taketani 
Y, Nifuji A, Denhardt DT, Noda M 2006 Osteopontin deficiency suppresses high 
phosphate load-induced bone loss via specific modulation of osteoclasts. 
Endocrinology 147(6):3040-9. 

197. Yamazaki M, Nakajima F, Ogasawara A, Moriya H, Majeska RJ, Einhorn TA 
1999 Spatial and temporal distribution of CD44 and osteopontin in fracture callus. 
J Bone Joint Surg Br 81(3):508-15. 

198. Hirakawa K, Hirota S, Ikeda T, Yamaguchi A, Takemura T, Nagoshi J, Yoshiki S, 
Suda T, Kitamura Y, Nomura S 1994 Localization of the mRNA for bone matrix 
proteins during fracture healing as determined by in situ hybridization. J Bone 
Miner Res 9(10):1551-7. 



www.manaraa.com

 161

199. Nakase T, Sugimoto M, Sato M, Kaneko M, Tomita T, Sugamoto K, Nomura S, 
Kitamura Y, Yoshikawa H, Yasui N, Yonenobu K, Ochi T 1998 Switch of 
osteonectin and osteopontin mRNA expression in the process of cartilage-to-bone 
transition during fracture repair. Acta Histochem 100(3):287-95. 

200. Steitz SA, Speer MY, McKee MD, Liaw L, Almeida M, Yang H, Giachelli CM 
2002 Osteopontin inhibits mineral deposition and promotes regression of ectopic 
calcification. Am J Pathol 161(6):2035-46. 

201. Hirota S, Asada H, Kohri K, Tsukamoto Y, Ito A, Yoshikawa K, Xu Z, Nomura 
S, Kitamura Y 1995 Possible role of osteopontin in deposition of calcium 
phosphate in human pilomatricomas. J Invest Dermatol 105(1):138-42. 

202. Huang W, Carlsen B, Rudkin G, Berry M, Ishida K, Yamaguchi DT, Miller TA 
2004 Osteopontin is a negative regulator of proliferation and differentiation in 
MC3T3-E1 pre-osteoblastic cells. Bone 34(5):799-808. 

203. Gundersen HJ, Jensen TB, Osterby R 1978 Distribution of membrane thickness 
determined by lineal analysis. J Microsc 113(1):27-43. 

204. Gole GA, Browning J, Elts SM 1990 The mouse model of oxygen-induced 
retinopathy: a suitable animal model for angiogenesis research. Doc Ophthalmol 
74(3):163-9. 

205. Rajagopalan S, Mohler E, 3rd, Lederman RJ, Saucedo J, Mendelsohn FO, Olin J, 
Blebea J, Goldman C, Trachtenberg JD, Pressler M, Rasmussen H, Annex BH, 
Hirsch AT 2003 Regional Angiogenesis with Vascular Endothelial Growth Factor 
(VEGF) in peripheral arterial disease: Design of the RAVE trial. Am Heart J 
145(6):1114-8. 

206. Baumgartner I, Pieczek A, Manor O, Blair R, Kearney M, Walsh K, Isner JM 
1998 Constitutive expression of phVEGF165 after intramuscular gene transfer 
promotes collateral vessel development in patients with critical limb ischemia. 
Circulation 97(12):1114-23. 

207. Lazarous DF, Unger EF, Epstein SE, Stine A, Arevalo JL, Chew EY, Quyyumi 
AA 2000 Basic fibroblast growth factor in patients with intermittent claudication: 
results of a phase I trial. J Am Coll Cardiol 36(4):1239-44. 



www.manaraa.com

 162

208. Mohler ER, 3rd, Rajagopalan S, Olin JW, Trachtenberg JD, Rasmussen H, Pak R, 
Crystal RG 2003 Adenoviral-mediated gene transfer of vascular endothelial 
growth factor in critical limb ischemia: safety results from a phase I trial. Vasc 
Med 8(1):9-13. 

209. Rajagopalan S, Trachtenberg J, Mohler E, Olin J, McBride S, Pak R, Rasmussen 
H, Crystal R 2002 Phase I study of direct administration of a replication deficient 
adenovirus vector containing the vascular endothelial growth factor cDNA (CI-
1023) to patients with claudication. Am J Cardiol 90(5):512-6. 

210. Makinen K, Manninen H, Hedman M, Matsi P, Mussalo H, Alhava E, Yla-
Herttuala S 2002 Increased vascularity detected by digital subtraction 
angiography after VEGF gene transfer to human lower limb artery: a randomized, 
placebo-controlled, double-blinded phase II study. Mol Ther 6(1):127-33. 

211. Isner JM, Walsh K, Symes J, Pieczek A, Takeshita S, Lowry J, Rosenfield K, 
Weir L, Brogi E, Jurayj D 1996 Arterial gene transfer for therapeutic angiogenesis 
in patients with peripheral artery disease. Hum Gene Ther 7(8):959-88. 

212. Isner JM, Pieczek A, Schainfeld R, Blair R, Haley L, Asahara T, Rosenfield K, 
Razvi S, Walsh K, Symes JF 1996 Clinical evidence of angiogenesis after arterial 
gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 
348(9024):370-4. 

213. Hershey JC, Baskin EP, Glass JD, Hartman HA, Gilberto DB, Rogers IT, Cook JJ 
2001 Revascularization in the rabbit hindlimb: dissociation between capillary 
sprouting and arteriogenesis. Cardiovasc Res 49(3):618-25. 

214. Hershey JC, Baskin EP, Corcoran HA, Bett A, Dougherty NM, Gilberto DB, Mao 
X, Thomas KA, Cook JJ 2003 Vascular endothelial growth factor stimulates 
angiogenesis without improving collateral blood flow following hindlimb 
ischemia in rabbits. Heart Vessels 18(3):142-9. 

215. Thurston G, Murphy TJ, Baluk P, Lindsey JR, McDonald DM 1998 Angiogenesis 
in mice with chronic airway inflammation: strain-dependent differences. Am J 
Pathol 153(4):1099-112. 

216. Rohan RM, Fernandez A, Udagawa T, Yuan J, D'Amato RJ 2000 Genetic 
heterogeneity of angiogenesis in mice. Faseb J 14(7):871-6. 



www.manaraa.com

 163

217. Moore DC, Leblanc CW, Muller R, Crisco JJ, 3rd, Ehrlich MG 2003 Physiologic 
weight-bearing increases new vessel formation during distraction osteogenesis: a 
micro-tomographic imaging study. J Orthop Res 21(3):489-96. 

218. Sugimoto K, Sakurai N, Kaneko M, Shirasawa H, Shibata K, Miyata M, Noguchi 
T, Uematsu K, Shimoda K, Sakata J 1991 Application of renal microangiography 
to normal and diseased kidneys of cattle and mice. Am J Vet Res 52(1):157-63. 

219. Baumgartner I, Schainfeld R, Graziani L 2005 Management of peripheral vascular 
disease. Annu Rev Med 56:249-72. 

220. Matsumoto K, Ishihara K, Tanaka K, Inoue K, Fushiki T 1996 An adjustable-
current swimming pool for the evaluation of endurance capacity of mice. J Appl 
Physiol 81(4):1843-9. 

221. Zhu B, Suzuki K, Goldberg HA, Rittling SR, Denhardt DT, McCulloch CA, 
Sodek J 2004 Osteopontin modulates CD44-dependent chemotaxis of peritoneal 
macrophages through G-protein-coupled receptors: evidence of a role for an 
intracellular form of osteopontin. J Cell Physiol 198(1):155-67. 

222. Moldovan NI, Goldschmidt-Clermont PJ, Parker-Thornburg J, Shapiro SD, 
Kolattukudy PE 2000 Contribution of monocytes/macrophages to compensatory 
neovascularization: the drilling of metalloelastase-positive tunnels in ischemic 
myocardium. Circ Res 87(5):378-84. 

223. Junqueira LC, Bignolas G, Brentani RR 1979 Picrosirius staining plus 
polarization microscopy, a specific method for collagen detection in tissue 
sections. Histochem J 11(4):447-55. 

224. Dayan D, Hiss Y, Hirshberg A, Bubis JJ, Wolman M 1989 Are the polarization 
colors of picrosirius red-stained collagen determined only by the diameter of the 
fibers? Histochemistry 93(1):27-9. 

225. Woessner JF, Jr. 1961 The determination of hydroxyproline in tissue and protein 
samples containing small proportions of this imino acid. Arch Biochem Biophys 
93:440-7. 

226. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, 
Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, 
Udagawa N, Takahashi N, Suda T 1998 Osteoclast differentiation factor is a 



www.manaraa.com

 164

ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to 
TRANCE/RANKL. Proc Natl Acad Sci U S A 95(7):3597-602. 

227. Jepsen KJ, Pennington DE, Lee YL, Warman M, Nadeau J 2001 Bone brittleness 
varies with genetic background in A/J and C57BL/6J inbred mice. J Bone Miner 
Res 16(10):1854-62. 

228. Helisch A, Wagner S, Khan N, Drinane M, Wolfram S, Heil M, Ziegelhoeffer T, 
Brandt U, Pearlman JD, Swartz HM, Schaper W 2006 Impact of mouse strain 
differences in innate hindlimb collateral vasculature. Arterioscler Thromb Vasc 
Biol 26(3):520-6. 

229. Dansky HM, Charlton SA, Sikes JL, Heath SC, Simantov R, Levin LF, Shu P, 
Moore KJ, Breslow JL, Smith JD 1999 Genetic background determines the extent 
of atherosclerosis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 
19(8):1960-8. 

230. Li CY, Schaffler MB, Wolde-Semait HT, Hernandez CJ, Jepsen KJ 2005 Genetic 
background influences cortical bone response to ovariectomy. J Bone Miner Res 
20(12):2150-8. 

231. Amblard D, Lafage-Proust MH, Laib A, Thomas T, Ruegsegger P, Alexandre C, 
Vico L 2003 Tail suspension induces bone loss in skeletally mature mice in the 
C57BL/6J strain but not in the C3H/HeJ strain. J Bone Miner Res 18(3):561-9. 

232. Kaartinen MT, Pirhonen A, Linnala-Kankkunen A, Maenpaa PH 1999 Cross-
linking of osteopontin by tissue transglutaminase increases its collagen binding 
properties. J Biol Chem 274(3):1729-35. 

233. Fantner GE, Hassenkam T, Kindt JH, Weaver JC, Birkedal H, Pechenik L, 
Cutroni JA, Cidade GA, Stucky GD, Morse DE, Hansma PK 2005 Sacrificial 
bonds and hidden length dissipate energy as mineralized fibrils separate during 
bone fracture. Nat Mater 4(8):612-6. 

234. Hansma PK, Fantner GE, Kindt JH, Thurner PJ, Schitter G, Turner PJ, Udwin SF, 
Finch MM 2005 Sacrificial bonds in the interfibrillar matrix of bone. J 
Musculoskelet Neuronal Interact 5(4):313-5. 



www.manaraa.com

 165

235. Lorigo LM, Faugeras OD, Grimson WE, Keriven R, Kikinis R, Nabavi A, Westin 
CF 2001 CURVES: curve evolution for vessel segmentation. Med Image Anal 
5(3):195-206. 

236. Lorigo L 1999 CURVES: Vessel Segmentation System.  Retrieved December 10, 
2006 from http://groups.csail.mit.edu/vision/medical-vision/liana-
3dcurves/compare.html. 

237. Mukundan S, Jr., Ghaghada KB, Badea CT, Kao CY, Hedlund LW, Provenzale 
JM, Johnson GA, Chen E, Bellamkonda RV, Annapragada A 2006 A liposomal 
nanoscale contrast agent for preclinical CT in mice. AJR Am J Roentgenol 
186(2):300-7. 

238. Thompson JB, Kindt JH, Drake B, Hansma HG, Morse DE, Hansma PK 2001 
Bone indentation recovery time correlates with bond reforming time. Nature 
414(6865):773-6. 

239. Fantner GE, Birkedal H, Kindt JH, Hassenkam T, Weaver JC, Cutroni JA, Bosma 
BL, Bawazer L, Finch MM, Cidade GA, Morse DE, Stucky GD, Hansma PK 
2004 Influence of the degradation of the organic matrix on the microscopic 
fracture behavior of trabecular bone. Bone 35(5):1013-22. 

240. Fantner GE, Oroudjev E, Schitter G, Golde LS, Thurner P, Finch MM, Turner P, 
Gutsmann T, Morse DE, Hansma H, Hansma PK 2006 Sacrificial bonds and 
hidden length: unraveling molecular mesostructures in tough materials. Biophys J 
90(4):1411-8. 

 

http://groups.csail.mit.edu/vision/medical-vision/liana-3dcurves/compare.html
http://groups.csail.mit.edu/vision/medical-vision/liana-3dcurves/compare.html


www.manaraa.com

 166

VITA 

CRAIG L. DUVALL 

 

Craig was born to his parents, James and Wanda, in the bustling metropolis of 

Greenville, KY (population 4,000) on August 25, 1979.  He was preceded in the family 

by 3 years by his older sister, Jennifer.  He attended Lake Malone and Longest 

Elementary Schools, followed by Muhlenberg South Middle and High Schools.  Craig 

enjoyed playing baseball and basketball throughout his childhood and lettered in these 

sports in high school.  In 1997, Craig moved to Lexington, KY to attend the University of 

Kentucky, where he cheered the Wildcats to a national championship in basketball his 

freshman year and to berths in the Outback and Music City Bowls in subsequent years.  

He also got an education on the side, and in May of 2001, Craig graduated with a B.S. in 

Biosystems and Agricultural Engineering with a focus in biomedical engineering.  From 

there, Craig moved to Atlanta, GA to study biomedical engineering and pursue his 

doctorate at the Georgia Tech / Emory joint Department of Biomedical Engineering.  

After over 5½ years in Atlanta, Craig still participates in intramural basketball, football, 

and softball leagues, and in the meantime, has added mountain and road biking to his list 

of favorite leisure activities. 


